DOI QR코드

DOI QR Code

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials

Steel Mesh Cement Mortar의 보수⋅보강 성능 평가

  • 김연상 (연세대학교 토목공학과) ;
  • 최승재 (연세대학교 토목공학과) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Received : 2014.02.17
  • Accepted : 2014.04.03
  • Published : 2014.07.30

Abstract

Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.

신축공사의 비용에 대한 부담과 건설된 지 오래되어 노후화가 진행된 철근콘크리트 구조물의 증가로 유지관리의 필요성이 크게 증가하여 점차적으로 보수 보강 분야가 확대되고 있다. 이러한 필요성의 증가로 인해 새로운 보수 보강 기술이 국내 외에서 지속적으로 연구되고 있다. 국내에서는 철근콘크리트 구조물의 보수 보강공법으로 강판접착공법, 섬유보강 (Fiber reinforced plastic, 이하 FRP) 표면부착공법, 외부 프리스트레싱공법 등이 사용되고 있다. 이러한 방법 외 Steel mesh로 보강한 시멘트 모르타르 (Steel Mesh Cement Mortar; SMCM)을 이용한 보수방법을 고려하고자, Steel mesh 의 보강 면적, 그리고 보강 층 수 (number of layer)를 달리하여, 3점 휨 부재 실험을 수행하였다. $1400{\times}500{\times}200$ (mm)의 기본 철근 콘크리트 (RC)를 포함하여 총 5종류의 시편을 제작하였으며, 처짐량을 측정하기 위해, 시편 상부에 LVDT를 설치하였으며, 시편 중앙부에 철근 변형률 게이지와 콘크리트 변형률 게이지, 전단 철근에 철근 변형률 게이지를 부착하였다. 3점 휨 실험 결과, 모든 하중-변위 곡선에서 공통적으로 SMCM으로 보강한 시편이 기본 RC에 비해 최대하중이 더 높은 것을 확인할 수 있었다. SMCM을 두 층, 그리고 기본 RC 하부 전체에 보강을 할 경우, 기본 RC에 비해 최대 하중은 1.18배, 처짐은 최대 1.37배 더 높은 것을 확인할 수 있었다. 시편의 종류마다 조금씩 다른 양상을 보였는데, 이는 SMCM과 RC의 부착 정도의 차이로 인해 결과의 차이가 발생한 것으로 보인다. 특히, 지점부 안쪽으로 부분 보강하고, Steel Mesh를 한 겹으로 보강한 네 번째 경우 (SM-B1)에는, SMCM이 실험 도중 박락되는 현상이 발생하였다. SMCM을 보수 보강 재료로서 활용하기 위해선 RC와의 부착 성능 향상이 필요하다고 판단된다.

Keywords

References

  1. ACI Committee 549-2R (2004), Report on Thin Reinforced Cementitious Products, American Concrete Institute, Farmington Hills, Michigan, 1-28.
  2. Chen, J. F., and Teng, J. G. (2001), Anchorage Strength Models for FRP and Steel Plates Bonded to Concrete, ASCE Journal of Structural Engineering, 127(1), 784-791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784)
  3. Chen, Z. F., and Wan, L. L. (2008), Evaluzation of CFRP, GFRP, and BFRP Material Systems for the Strengthening of RC Slabs, Journal of Reinforced Plastices and Composites, 27(12), 1233-1243. https://doi.org/10.1177/0731684407084122
  4. Karbhari, V. M. and Seible, F. (2000), Fiber Reinforced Composite-Advanced Materials for the Renewal of Civil Infrastructure, Applied Composite Materials, 7(2-3), 95-124. https://doi.org/10.1023/A:1008915706226
  5. Kim, S. B., Kim, J. H. Jay, Choi, H. S., and Heo, G. (2007), Development and Applicability Evaluation of High Performance Poly-urea for RC Construction Reinforcement, KSCE JOURNAL OF CIVIL ENGINEERING, 30(2A), 169-176 (in Korean).
  6. L'Hermite, R. (1977), Use of bonding techniques for reinforcing concrete and masonry structures, Materials and Structures, 10, 85-89.
  7. Mun, T. C., Kang, C. W., and Lee, H. (2009), Characteristics of Physical Properties According to Compound Condition of Grout Mortar, Journal of Korean society of explosives and blasting engineering, 27(1), 32-37.
  8. Nanni, A. (1993), Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications, Elsevier, Science Publishers, Amsterdam, The Netherlands, 450.
  9. Neville, A. M. (1996), Properties of concrete, 4th ed. John Wiley & Sons, New York.
  10. Nilson, H., Darwin, D., and Dolan, C. W. (2003), Design of Concrete Structures, 13th ed., 2003, McGraw-Hill, New York.
  11. Park, J. C., Kim, S. B., Lee, S. W., and Kim, J. H. Jay (2011), Application Study on the Reinforcement Effect Evaluation of RC Slab Strengthened with Stiff Type Poly-Urea, KSCE JOURNAL OF CIVIL ENGINEERING, 31(6), 457-464 (in Korean).
  12. Sim, J. S. (1995), The Currency of Recent Studies for the Repair and Rehabilitation of R/C Structures, Journal of the Korea Concrete Institute, 19(6), 64-73 (in Korean).