초록
본 연구는 2000~2013년까지의 월별 시계열 자료를 이용하여 실물 금융변수와 해운경기간의 동태적 상관관계를 분석한다. 특히, 2008년 글로벌위기 이후 운임지수의 지속적인 하락국면에서 실물 금융변수가 얼마만큼의 영향을 미쳤는가를 중심으로 분석하였다. 모형의 적합성과 예측력 비교를 위해 기존의 일반적인 VAR 모형과 베이지안 VAR를 비교하였으며, VAR 모형 설정에 있어 외생성을 보다 객관적으로 도출하기 위해 DAG(Directed Acyclic Graph)를 활용하여 충격반응분석을 실시하고 각각의 모형에 대한 예측력을 비교하였다. 분석결과 BDI에 대한 금융 실물 부문의 영향에 대하여 베이지안 VAR 모형의 충격반응분석 결과는 일반적인 VAR 모형보다 명확하게 드러났으며, 두 모형 간의 예측력을 검정한 결과 베이지안 VAR 모형의 예측력이 매우 우월한 것으로 나타났다.
The focus of this study is to analyse dynamic relationship among BDI(Baltic Dry-bulk Index, hereafter BDI), forex market and industrial production using monthly data from 2003-2013. Specifically, we have focused on the investigations how monetary and real variable affect shipping industry during recession period. To compare performance between general VAR and Bayesian VAR we first examine DAG(Directed Acyclic Graph) to clarify causality among the variables and then employ MSFE(mean squared forecast error). The overall estimated results from impulse-response analysis imply that BDI has been strongly affected by other shock, such as forex market and industrial production in Bayesian VAR. In particular, Bayesian VAR show better performance than general VAR in forecasting.