Analysis of target volume motion followed by induced abdominal compression in tomotherapy for prostate cancer

전립선암 환자의 복부압박에 따른 표적 움직임 분석

  • Oh, Jeong Hun (Department of Radiation Oncology, Kyunghee University Medical Center) ;
  • Jung, Geon A (Department of Radiation Oncology, Kyunghee University Medical Center) ;
  • Jung, Won Seok (Department of Radiation Oncology, Kyunghee University Medical Center) ;
  • Jo, Jun Young (Department of Radiation Oncology, Kyunghee University Medical Center) ;
  • Kim, Gi Chul (Department of Radiation Oncology, Kyunghee University Medical Center) ;
  • Choi, Tae Kyu (Department of Radiation Oncology, Kyunghee University Medical Center)
  • 오정훈 (경희의료원 방사선종양학과) ;
  • 정건아 (경희의료원 방사선종양학과) ;
  • 정원석 (경희의료원 방사선종양학과) ;
  • 조준영 (경희의료원 방사선종양학과) ;
  • 김기철 (경희의료원 방사선종양학과) ;
  • 최태규 (경희의료원 방사선종양학과)
  • Received : 2014.03.21
  • Accepted : 2014.04.30
  • Published : 2014.06.30

Abstract

Purpose : To evaluate the changes of the motion of abdominal cavity between interfraction and intrafraction by using abdominal compression for reducing abdominal motion. Materials and Methods : 60 MVCT images were obtained before and after tomotherapy from 10 prostate cancer patients over the whole radiotherapy period. Shift values ( X -lateral Y -longitudinal Z -vertical and Roll ) were measured and from it, the correlation of between interfraction set up change and intrafraction target motion was analyzed when applying abdominal compression. Results : The motion changes of interfraction were X-average $0.65{\pm}2.32mm$, Y-average $1.41{\pm}4.83mm$, Z-average $0.73{\pm}0.52mm$ and Roll-average $0.96{\pm}0.21mm$. The motion changes of intrafraction were X-average $0.15{\pm}0.44mm$, Y-average $0.13{\pm}0.44mm$, Z-average $0.24{\pm}0.64mm$ and Roll-average $0.1{\pm}0.9mm$. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : Abdominal compression can minimize the motion of internal organs and patients. So it is considered to be able to get more ideal dose volume without damage of normal structures from generating margin in small in producing PTV.

목 적 : 외부 압박을 통해 전립선암 환자의 복강 내 압력을 안정화시켜 움직임을 감소하여 치료 간(interfraction)과 치료 중(intrafraction)에 변화를 측정하여 평가하고자 시행하였다. 대상 및 방법 : 10명의 전립선환자들은 전체 치료과정동안 MVCT 스캔을 통해 치료 전과 후에 걸쳐 환자 당 60개의 영상을 획득하였고 획득한 좌우방향(X), 상하방향(Y), 전후방향(Z), 회전방향(Roll)에 대한 Shift 값들을 이용하여 복부 압박 시 치료 간 치료준비 변화와 치료 중 표적 움직임의 상호 연관성을 분석하였다. 결 과 : 치료 간의 움직임 변화는 평균 좌우방향(X)에서 $0.65{\pm}2.32mm$, 상하방향(Y)에서 $1.41{\pm}4.83mm$, 전후방향(Z)에서 $0.73{\pm}0.52mm$, 회전방향(Roll)에서 $0.96{\pm}0.21^{\circ}$로 나타났다. 치료 중 움직임 변화는 평균 좌우방향(X)에서 $0.15{\pm}0.44mm$, 상하방향(Y)에서 $0.13{\pm}0.44mm$, 전후방향(Z)에서 $0.24{\pm}0.64mm$, 회전방향(Roll)에서 $0.1{\pm}0.9^{\circ}$로 나타났다. 결 론 : 전처치과정과 외부에서 복부압박을 통한 전복부의 움직임을 제한한다면 치료동안에 내부 장기와 환자의 움직임을 감소시켜 보다 적은 여유(margin)로 계획용 표적체적(PTV)을 생성할 수 있어서 정상조직의 부작용 증가 없이 더욱 이상적인 선량 체적을 얻을 수 있을 것으로 사료된다.

Keywords

References

  1. Kupelian P, Willoughby T, Mahadevan A et al. Multi institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 2007;67:1088-98. https://doi.org/10.1016/j.ijrobp.2006.10.026
  2. Tsai CL, Wu JK, Wang CW et al. Using cone-beam computed tomography to evaluate the impact of bladder filling status on target position in prostate radiotherapy. Strahlenther Onkol 2009;185:588-95. https://doi.org/10.1007/s00066-009-1987-7
  3. Julien D, Christian T, Christian P et al. Respiratory Induced Prostate Motion Characterization and Quantification in Dynamic MRI. Strahlenther Onkol 2011;431 :6-8
  4. Kotte AN, Hofman P, Lagendijk JJ, et al. Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 2007;69:419-425. https://doi.org/10.1016/j.ijrobp.2007.03.029
  5. Li HS, Chetty IJ, Enke CA, et al. Dosimetric consequences of intrafraction prostate motion. Int J Radiat Oncol Biol Phys 2008;71:801-812. https://doi.org/10.1016/j.ijrobp.2007.10.049
  6. Madsen BL, Hsi RA, Pham HT, et al. Intrafractional stability of the prostate using a stereotactic radiotherapy technique. Int J Radiat Oncol Biol Phys 2003;57:1285-1291. https://doi.org/10.1016/S0360-3016(03)00746-6
  7. Nederveen AJ, van der Heide UA, Dehnad H, et al. Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 2002;53:206-214. https://doi.org/10.1016/S0360-3016(01)02823-1
  8. Padhani AR, Khoo VS, Suckling J, Husband JE, Leach MO, Dearnaley DP. Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. Int J Radiat Oncol Biol Phys 1999;44:525-33. https://doi.org/10.1016/S0360-3016(99)00040-1
  9. Teh BS, McGary JE, Dong L, et al. The use of rectal balloon during the delivery of intensity modulated radiotherapy (IMRT) for prostate cancer: more than just aprostate gland immobilization device. Cancer J 2002;8:476-83. https://doi.org/10.1097/00130404-200211000-00012
  10. McNair HA, Parker C, Hansen VN, et al. An evaluation of Beam cath in the verification process for prostate cancer radiotherapy. Clin Oncol (R Coll Radiol) 2004;16:138-47. https://doi.org/10.1016/j.clon.2003.11.012
  11. ICRU Report 62, International Commission on Radiation Photon beam therapy. Supplement to ICRU Report 50;1999
  12. Murphy MJ. Tracking moving organs in real time. Semin Radiat Oncol 2004;14 :91-100. https://doi.org/10.1053/j.semradonc.2003.10.005
  13. Dawson LA, Litzenberg DW, Brock KK, et al. A comparison of ventilatory prostate movement in four treatment positions. Int J Radiat Oncol Biol Phys 2000;48:319-23.
  14. Malone S, Crook JM, Kendal WS, Szanto J. Respiratory-induced prostate motion: quantification and characterization. Int J Radiat Oncol Biol Phys 2000;48:105-9. https://doi.org/10.1016/S0360-3016(00)00603-9
  15. Li HS, Chetty IJ, Enke CA, et al. Dosimetric consequences of intrafraction prostate motion. Int J Radiat Oncol Biol Phys 2008;71:801-812 https://doi.org/10.1016/j.ijrobp.2007.10.049
  16. Huang K, Palma DA, Scott D, McGregor D, Gaede S, Yartsev S, et al. Inter- and intrafraction uncertainty in prostate bed image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2012 Oct 1;84(2):402-7. https://doi.org/10.1016/j.ijrobp.2011.12.035
  17. Song PY, Washington M, Vaida F, et al. A comparison of four patient immobilization devices in the treatment of prostate cancer patients with three dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 1996;34:213-219. https://doi.org/10.1016/0360-3016(95)02094-2
  18. Wang L, Jacob R, Chen L, et al. Stereotactic IMRT for prostate cancer: setup accuracy of a new stereotactic body localization system. J Appl Clin Med Phys 2004;5:18--28. https://doi.org/10.1120/jacmp.2020.21705
  19. Serago CF, Buskirk SJ, Igel TC, Gale AA, Serago NE, Earle JD. Comparison of daily megavoltage electronic portal imaging or kilovoltage imaging with marker seeds to ultrasound imaging or skin marks for prostate localization and treatment positioning in patients with prostate cancer. Int J Radiat Oncol Biol Phys 2006;65:1585--92. https://doi.org/10.1016/j.ijrobp.2006.04.019
  20. Dawson LA, Litzenberg DW, Brock KK, et al. A comparison of ventilatory prostate movement in four treatment positions. Int J Radiat Oncol Biol Phys 2000;48:319--23.
  21. Malone S, Crook JM, Kendal WS, Szanto J. Respiratory-induced prostate motion: quantification and characterization. Int J Radiat Oncol Biol Phys 2000;48:105--9. https://doi.org/10.1016/S0360-3016(00)00603-9
  22. Boda-Heggemann J, Kohler FM, Wertz H, Ehmann M, Hermann B, Riesenacker N, et al. Intrafraction motion of the prostate during an IMRT session: a fiducial-based 3D measurement with Cone-beam CT. Radiat Oncol. 2008;3:37. https://doi.org/10.1186/1748-717X-3-37
  23. Hille A, Schmidberger H, Tows N, Weiss E, Vorwerk H, Hess CF. The impact of varying volumes in rectal balloons on rectal dose sparing in conformal radiation therapy of prostate cancer. A prospective threedimensional analysis. Strahlenther Onkol. 2005 Nov;181(11):709-16. https://doi.org/10.1007/s00066-005-1443-2