DOI QR코드

DOI QR Code

항공기 배기 플룸의 파장별 IR 신호 해석

Spectral Infrared Signature Analysis of the Aircraft Exhaust Plume

  • Gu, Bonchan (Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Baek, Seung Wook (Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yi, Kyung Joo (Korea Institute of Nuclear Safety) ;
  • Kim, Man Young (Department of Aerospace Engineering, Chonbuk National University) ;
  • Kim, Won Cheol (Agency for Defense Development)
  • 투고 : 2014.06.02
  • 심사 : 2014.07.22
  • 발행 : 2014.08.01

초록

추진기관 배기 플룸의 적외선 복사(Infrared radiation :IR) 신호는 항공기 생존성에 영향을 미치는 주요 요인이다. 항공기의 생존성 향상을 위해 IR 감소 설계 기술이 적용된 추진기관의 정확한 IR 신호 예측이 필요하다. 본 연구는 유동 및 열전달 해석 코드를 이용하여 노즐 내부, 외부 자유류, 플룸 영역의 열유동장을 수치 해석하였다. 비회색가스의 특성을 효율적으로 해석하는 좁은밴드 기반의 재조합 회색가스가중합법을 적용하여 항공기 플룸에서 방사되는 파장별 IR 신호를 계산하였다. 개발된 프로그램의 정확성과 신뢰성을 확보하고자 1차원 모델에 대한 검증을 거친 후 항공기 추진기관의 열유동장 및 파장별 IR 신호 해석을 수행하였다. 해석을 통하여 상대적으로 플룸 내부에서 IR 복사강도가 높은 것을 확인하였고 온도, 분압, 화학종에 따라 다른 파장별 IR 신호 특성을 파악하였다. 노즐 출구 부근에서는 노즐 벽면의 고체 방사로 인하여 파장별 IR 복사강도가 연속적으로 나타났다.

Infrared signature of aircraft exhaust plume is the critical factor for aircraft survivability. To improve the military aircraft survivability, the accurate prediction of infrared signature for the propulsion system is needed. The numerical analysis of thermal fluid field for nozzle inflow, free stream flow, and plume region is conducted by using the in-house code. Weighted Sum of Gray Gases Model based on Narrow Band with regrouping is adopted to calculate the spectral infrared signature emitted from aircraft exhaust plume. The accuracy and reliability of the developed code are validated in the one-dimensional band model. It is found that the infrared radiant intensity is relatively more strong in the plume through the analysis, the results show the different characteristic of the spectral infrared signature along the temperature, the partial pressure, and the species distribution. The continuous spectral radiant intensity is shown near the nozzle exit due to the emission from the nozzle wall.

키워드

참고문헌

  1. Hudson, R. D., Infrared System Engineering, Wiley-Interscience, 1969.
  2. Mahulikar, S. P., Rao, G. A., and Sane, S. K., "Aircraft Plume Infrared Signature in Nonafterburning Mode," Journal of Thermophysics and Heat Transfer, Vol. 19, No. 3, July-Sept, 2005, pp.413-415. https://doi.org/10.2514/1.14686
  3. Shan, Y. and Zhang, J. Z., "Numerical Investigation of Flow Mixture Enhancement and Infrared Rdiation Shield by Lobed Forced Mixer," Applied Thermal Engineering, Vol. 29, 2009, pp.3687-3695. https://doi.org/10.1016/j.applthermaleng.2009.06.023
  4. Mahulikar, Sp. P., Sonawane, H. R., and Rao, G. A., "Infrared Signature Studies of Aerospace Vehicles," Progress in Aerospace Science, Vol. 43, 2007, pp.218-245. https://doi.org/10.1016/j.paerosci.2007.06.002
  5. Kang, D. W., Kim, I. D., Myon, R. S., and Kim, W. C., "Investigation of Aircraft Plume IR Signature for Various Nozzle ConFigurations and Atmospheric Conditions," Journal of The Korean Society for Aeronautical and Space Science, Vol. 42, No. 1, 2014, pp.10-19. https://doi.org/10.5139/JKSAS.2014.42.1.10
  6. Weiss, J. M. and Smith, W. A., "Preconditioning Applied to Variable and Constant Density Flows," AIAA Journal, Vol. 33, No. 11, 1995, pp.2050-2057 https://doi.org/10.2514/3.12946
  7. Liou, M. S., "A Sequel to AUSM: AUSM+," Journal of Computational Physics, Vol. 129, No. 256, 1996, pp.364-382. https://doi.org/10.1006/jcph.1996.0256
  8. Liou, M. S., "A Sequel to AUSM, Part II: AUSM+-up for all speeds," Journal of Computational Physics, Vol. 214, 2006, pp.137-170. https://doi.org/10.1016/j.jcp.2005.09.020
  9. Mentor, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, Aug. 1994, pp.1598-1605. https://doi.org/10.2514/3.12149
  10. Wilcox, D. C., "Progress in Hypersonic Turbulence Modeling," AIAA Paper 91-1785, June 1991.
  11. Chai, J. C., Lee, H. S., and Patankar, S. V., "Finite-Volume Method for Radiation Heat Trnasfer," Journal of Thermophysics and Heat Trnasfer, Vol. 8, No. 3, July-Sept. 1994, pp.419-425. https://doi.org/10.2514/3.559
  12. Baek, S. W., Kim, M. Y., and Kim, J. S., "Nonorthogonal Finite-Volume Solutions of Radiative Heat Transfer in a Three-Dimensional Enclosure," Numerical Heat Trnasfer, Part B, Vol. 34, 1998, pp.419-437. https://doi.org/10.1080/10407799808915066
  13. Smith, T. F., Shen, Z. F., Friedman, Z. N., "Evaluation of Coefficients for the Weighted Sum of Gray Gases Model," ASME Journal of Heat Transfer, Vol. 104, No. 4, 1982, pp.602-608. https://doi.org/10.1115/1.3245174
  14. Park, W. H. and Kim, T. K., "Study on Regrouping of Gray Gases in spectral WSGGM for Arbitrary Mixtures of CO2 and H2O Gases," Transactions of the KSME B, Vol. 27, No. 2, 2003, pp.227-235.
  15. Kim, O. J. and Song, T. H., "Data base of WSGGM-based spectral model for radiation properties of combustion products," Journal of Quantitative Spectroscopy & Radiative Transfer Vol. 64, 2000, pp.379-394. https://doi.org/10.1016/S0022-4073(99)00125-9
  16. Lee, S. N. and Baek, S. W., "Numerical Analysis of Quasi-Steady-Combustion Characteristics in a Solid Rocket Motor," Journal of Propulsion and Power, Vol. 26, No. 5, Sept-Oct, 2010, pp.980-986. https://doi.org/10.2514/1.47520
  17. Yi, K. J., Baek, S. W., Kim, M. Y., Lee, S. N., and Kim, W. C., "The Effects of Heat Shielding in Jet Engine Exhaust Systems on Aircraft Survivability," Numerical Heat Transfer, Part A, Vol. 66, 2014, pp.89-106. https://doi.org/10.1080/10407782.2013.869441
  18. Soufiani, A. and Taine, J., "High temperature gas radiative property parameters of statistical narrow-band model for H2O, Co2 and CO, and correlated-K model for H2O and CO2," International Journal of Heat and Mass Transfer, Vol. 40, No. 4, 1997, pp.987-991. https://doi.org/10.1016/0017-9310(96)00129-9
  19. Hunter, C. A, "Experimental Investigation of Separated Nozzle Flow," Journal of Propulsion and Power, Vol. 20, No. 3, 2004, pp.527-532. https://doi.org/10.2514/1.4612

피인용 문헌

  1. Measurement and Validation of Infrared Signature from Exhaust Plume of a Micro-Turbo Engine vol.44, pp.12, 2016, https://doi.org/10.5139/JKSAS.2016.44.12.1054