DOI QR코드

DOI QR Code

다발형 폴리아미드섬유 보강 콘크리트의 휨거동에 관한 실험적 연구

A Experimental Study on the Flexural Behavior of Bundle Type Polyamide Fiber Reinforced Concrete

  • 투고 : 2014.02.24
  • 심사 : 2014.03.18
  • 발행 : 2014.03.31

초록

일반적으로 건설재료 용도로 많이 사용되고 있는 유기섬유 보강 콘크리트는 섬유 자체의 인장강도 및 탄성계수는 낮지만, 휨거동, 균열에 대한 저항성 및 충격저항성 등의 특성은 우수하며, 내화학성이 뛰어나고 부식의 우려가 없는 것으로 널리 알려져 있다. 최근 해외에서는 유기섬유 보강재를 터널 숏크리트와 프리캐스트 세그먼트 라이닝, 교량 슬래브 및 PC제품 분야에서 일부 활용되고 있으며, 그 종류 또한 다양하다. 본 연구에서는 다발형 폴리아미드섬유를 혼입한 콘크리트의 휨거동 특성을 ASTM C 1609 및 KS F 2566에 준하여 하중-처짐 관계를 도출하여 유기섬유 보강 콘크리트의 적용 가능성을 검토하였다.

Synthetic fiber reinforced concrete is applicable to many applications for construction material. In general, synthetic fibers have low tensile strength and elastic modulus, but they have many advantages such as high crack resistance, impact resistance, chemical resistance, flexural behavior and corrosion free in fiber reinforced concrete. Recently, fiber reinforced concrete with macro synthetic fibers has been used to improve performance of structures in tunnel shotcrete, precast segmental lining and bridge slab and precast concrete structures. This study investigated the influence of bundled type polyamide fiber reinforced concrete on the flexural behavior in accordance with ASTM C 1609 and KS F 2566 standards.

키워드

참고문헌

  1. ASTM C 1609/C 1609M-05. (2006). "Structural Test Method for Flexural Performance of Fiber Reinforced Concrete (using Beam with Third Point Loading).", American Society of Testing and Materials.
  2. ASTM C 1018-97. (1998). "Structural Test Method for Flexural Toughness and First Crack Strength of Fiber Reinforced Concrete (using Beam with Third Point Loading).", American Society of Testing and Materials.
  3. Jeon, I.K., Jeon, C.K. (2010). "Manufacture and Construction Technology of Polyamide Fiber Reinforced Shotcrete in Tunnel.", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.14, No.6, pp.41-45.
  4. Kim, Y.G., Kim, S.C., Kim, M.H. (2012). "A Study on the Dynamic Properties of Cement Mortar with Recycled PET Fiber.", Journal of the Korea Institute of Building Construction, Vol.2, No.4, pp.113-122. https://doi.org/10.5345/JKIC.2002.2.4.113
  5. KS F 2566:2000. (2000). "Test Method for Flexural Toughness of Steel Fiber Reinforced Concrete.", Korean Standards Association.
  6. Lee, I.C., Kim, H.S., Nam, J.S., Kim, S.B., Kim, G.Y. (2013). "Evaluation of Protective Performance of Fiber Reinforced Concrete T-Wall.", Journal of the Korea Institute of Building Construction, Vol.13, No.5, pp.465-473. https://doi.org/10.5345/JKIBC.2013.13.5.465
  7. Lee, I.W., Kim, S.H., Choi, T.J., Hong, B.T., Kim, H.H., Won, J.P. (2011). "Fracture Performance of Stuructural Synthetic Fiber Reinforced Concrete.", Conference paper on Korea Concrete Institute, Vol.23, No.2, pp.103-104.
  8. Mobasher, B., Shah, S.P. (1990). "Interaction between fibers and the matrix in glass fiber reinforced concrete, Thin-Section Fiber Reinforced Concrete and Ferrocement", SP 124, American Concrete Institute, Detroit, MI, 1990, pp.137-156.
  9. Soroushian, P., Khan, A., Hsu, J.W. (1992). "Mechanical Properties of Concrete Materials Reinforced with Polypropylene or Polyethylene Fibers", ACI Materials Journal, Vol.89, No.2, pp.535-540.
  10. Yoon, J.H., Jeon, I.K., Jeon, C.K., Lee, S.C. (2012). "Experimental Construction of Polyamide Fiber Reinforced Shotcrete Technology.", Journal of the Korean Recycled Construction Resource Institute, Vol.7, No.2, pp.78-83.

피인용 문헌

  1. Workability and Strength Characteristics of Lathe Scrap Reinforced Cementitious Composites vol.20, pp.6, 2016, https://doi.org/10.11112/jksmi.2016.20.6.040