References
- Y. Achdou and O. Pironneau, Computational Methods for Option Pricing, SIAM, Philadelphia, 2005.
- F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ. 81 (1973), no. 3, 637-659. https://doi.org/10.1086/260062
- M. Brennan and E. Schwartz, The valuation of American put options, J. Financ. 32 (1977), no. 2, 449-462. https://doi.org/10.1111/j.1540-6261.1977.tb03284.x
- M. Brennan and E. Schwartz, Finite difference methods and jump processes arising in the pricing of contin-gent claims: a synthesis, J. Financ. Quant. Anal. 13 (1978), no. 3, 461-474. https://doi.org/10.2307/2330152
- G. W. Buetow and J. S. Sochacki, The trade-off between alternative finite difference techniques used to price derivative securities, Appl. Math. Comput. 115 (2000), no. 2-3, 177-190. https://doi.org/10.1016/S0096-3003(99)00141-1
- C. Christara and D. M. Dang, Adaptive and high-order methods for valuing American options, J. Comput. Financ. 14 (2011), no. 4, 74-113.
- D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, John Wiley & Sons, New York, 2006.
- S. Figlewski and B. Gao, The adaptive mesh model: a new approach to efficient option pricing, J. Financ. Econ. 53 (1999), no. 3, 313-351. https://doi.org/10.1016/S0304-405X(99)00024-0
- R. Geske and K. Shastri, Valuation by approximation: a comparison of alternative option valuation techniques, J. Financ. Quant. Anal. 20 (1985), no. 1, 45-71. https://doi.org/10.2307/2330677
- D. Jeong, Mathematical model and numerical simulation in computational finance, Ph.D. Thesis, Dep. Mathematics, Korea Univ., Korea, 2012.
- R. Kangro and R. Nicolaides, Far field boundary conditions for Black-Scholes equations, SIAM J. Numer. Anal. 38 (2000), no. 4, 1357-1368. https://doi.org/10.1137/S0036142999355921
- B. J. Kim, C. Ahn, and H. J. Choe, Direct computation for American put option and free boundary using finite difference method, Jpn. J. Ind. Appl. Math. 30 (2013), no. 1, 21-37. https://doi.org/10.1007/s13160-012-0094-9
- G. Linde, J. Persson, and L. von Sydow, A highly accurate adaptive finite difference solver for the Black-Scholes equation, Int. J. Comput. Math. 86 (2009), no. 12, 2104-2121. https://doi.org/10.1080/00207160802140023
- P. Lotstedt, S. Soderberg, A. Ramage, and L. Hemmingsson-Franden, Implicit solution of hyperbolic equations with space-time adaptivity, BIT Numer. Math. 42 (2002), no. 1, 134-158. https://doi.org/10.1023/A:1021978304268
- P. Lotstedt, J. Persson, L. von Sydow, and J. Tysk, Space-time adaptive finite difference method for European multi-asset options, Comput. Math. Appl. 53 (2007), no. 8, 1159-1180. https://doi.org/10.1016/j.camwa.2006.09.014
- R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci. 4 (1973), no. 1, 141-183. https://doi.org/10.2307/3003143
- J. Persson and L. von Sydow, Pricing European multi-asset options using a space-time adaptive FD-method, Comput. Vis. Sci. 10 (2007), no. 4, 173-183. https://doi.org/10.1007/s00791-007-0072-y
- J. Persson and L. von Sydow, Pricing American options using a space-time adaptive finite difference method, Math. Comput. Simulation 80 (2010), no. 9, 1922-1935. https://doi.org/10.1016/j.matcom.2010.02.008
- O. Pironneau and F. Hecht, Mesh adaption for the Black and Scholes equations, East-West J. Numer. Math. 8 (2000), no. 1, 25-35.
- E. Schwartz, The valuation of warrants: Implementing a new approach, J. Financ. Econ. 4 (1977), no. 1, 79-93. https://doi.org/10.1016/0304-405X(77)90037-X
- D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method, John Wiley & Sons, New York, 2000.
- J. Topper, Financial Engineering with Finite Elements, John Wiley & Sons, New York, 2005.
- P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993.
- R. Windcliff, P. A. Forsyth, and R. A. Vetzal, Analysis of the stability of the linear boundary condition for the Black-Scholes equation, J. Comput. Financ. 8 (2004), 65-92.
- S. Zhao and G. W. Wei, Option valuation by using discrete singular convolution, Appl. Math. Comput. 167 (2005), no. 1, 383-418. https://doi.org/10.1016/j.amc.2004.07.010
- R. Zvan, P. A. Forsyth, and K. R. Vetzal, Robust numerical methods for PDE models of Asian options, J. Comput. Financ. 1 (1998), 39-78.
Cited by
- Second order accuracy finite difference methods for space-fractional partial differential equations vol.320, 2017, https://doi.org/10.1016/j.cam.2017.01.013
- PATH AVERAGED OPTION VALUE CRITERIA FOR SELECTING BETTER OPTIONS vol.20, pp.2, 2016, https://doi.org/10.12941/jksiam.2016.20.163
- Accuracy, Robustness, and Efficiency of the Linear Boundary Condition for the Black-Scholes Equations vol.2015, 2015, https://doi.org/10.1155/2015/359028
- Accurate and Efficient Computations of the Greeks for Options Near Expiry Using the Black-Scholes Equations vol.2016, 2016, https://doi.org/10.1155/2016/1586786