References
- G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), no. 1, 53-60. https://doi.org/10.1112/S0024609305018096
- G. Bachman and P. Moree, On a class of ternary inclusion-exclusion polynomials, Integers 11 (2011), A8, 14 pp.
- B. Bzdega, On the height of cyclotomic polynomials, Acta Arith. 152 (2012), no. 4, 349-359. https://doi.org/10.4064/aa152-4-2
-
L. Carlitz, The number of terms in the cyclotomic polynomial
$F{pq}(X)$ , Amer. Math. Monthly 73 (1966), 979-981. https://doi.org/10.2307/2314500 - S. Elder, Flat Cyclotomic Polynomials: A New Approach, arXiv:1207.5811v1, 2012.
- H. Hong, E. Lee, H. S. Lee, and C. M. Park, Maximum gap in (inverse) cyclotomic polynomial, J. Number Theory 132 (2012), no. 10, 2297-2315. https://doi.org/10.1016/j.jnt.2012.04.008
- N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), no. 1, 118-126. https://doi.org/10.1016/j.jnt.2007.01.008
-
T. Y. Lam and K. H. Leung, On the cyclotomic polynomial
${\Phi}{pq}(X)$ , Amer. Math. Monthly 103 (1996), no. 7, 562-564. https://doi.org/10.2307/2974668 - E. Lehmer, On the magnitude of the coefficients of the cyclotomic polynomials, Bull. Amer. Math. Soc. 42 (1936), no. 6, 389-392. https://doi.org/10.1090/S0002-9904-1936-06309-3
- H. W. Lenstra, Vanishing sums of roots of unity, in: Proceedings, Bicentennial Congress Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, pp. 249-268, Math. Centre Tracts, 101, Math. Centrum, Amsterdam, 1979.
- H. Moller, Uber die Koeffizienten des n-ten Kreisteilungspolynoms, Math. Z. 119 (1971), 33-40. https://doi.org/10.1007/BF01110941
- P. Moree, Inverse cyclotomic polynomials, J. Number Theory 129 (2009), no. 3, 667-680. https://doi.org/10.1016/j.jnt.2008.10.004
- R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics (Pune, 1999), 311-322, Bhaskaracharya Pratishthana, Pune, 2000.
- J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), no. 10, 2223-2237. https://doi.org/10.1016/j.jnt.2010.03.012
Cited by
- ON A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS vol.52, pp.6, 2015, https://doi.org/10.4134/BKMS.2015.52.6.1911