DOI QR코드

DOI QR Code

Hybrid Camera System with a TOF and DSLR Cameras

TOF 깊이 카메라와 DSLR을 이용한 복합형 카메라 시스템 구성 방법

  • Kim, Soohyeon (Dept. of Geoinformatic Engineering Inha University) ;
  • Kim, Jae-In (Dept. of Geoinformatic Engineering Inha University) ;
  • Kim, Taejung (Dept. of Geoinformatic Engineering Inha University)
  • 김수현 (인하대학교 지리정보공학과) ;
  • 김재인 (인하대학교 지리정보공학과) ;
  • 김태정 (인하대학교 지리정보공학과)
  • Received : 2014.07.03
  • Accepted : 2014.07.28
  • Published : 2014.07.30

Abstract

This paper presents a method for a hybrid (color and depth) camera system construction using a photogrammetric technology. A TOF depth camera is efficient since it measures range information of objects in real-time. However, there are some problems of the TOF depth camera such as low resolution and noise due to surface conditions. Therefore, it is essential to not only correct depth noise and distortion but also construct the hybrid camera system providing a high resolution texture map for generating a 3D model using the depth camera. We estimated geometry of the hybrid camera using a traditional relative orientation algorithm and performed texture mapping using backward mapping based on a condition of collinearity. Other algorithm was compared to evaluate performance about the accuracy of a model and texture mapping. The result showed that the proposed method produced the higher model accuracy.

본 논문은 Time-of-Flight(ToF) 깊이 카메라와 DSLR을 이용한 사진측량 기반의 복합형 카메라시스템 구성방법을 제안한다. ToF 깊이 카메라는 깊이 정보를 실시간으로 출력하는 장점이 있지만 제공되는 명암 영상의 해상도가 낮고 획득한 깊이 정보가 물체의 표면상태에 민감하여 잡음이 발생하는 단점이 있다. 따라서 깊이 카메라를 이용한 입체 모델 생성을 위해선 깊이 정보의 보정과 함께 고해상도 텍스처맵을 제공하는 복합형 카메라의 구성이 필요하다. 이를 위해 본 논문은 상대표정을 수행하여 깊이 카메라와 DSLR의 상대적인 기하관계를 추정하고 공선조건식 기반의 역투영식을 이용하여 텍스처매핑을 수행한다. 성능검증을 위해 기존 기법의 모델 정확도와 텍스처매핑 정확도를 비교 분석한다. 실험결과는 제안 기법의 모델 정확도가 더 높았는데 이는 기존 기법이 깊이 카메라의 잡음이 있는 3차원 정보를 기준점으로 사용하여 절대표정을 수행한 반면에 제안 기법은 오차정보가 없는 두 영상간의 공액점을 이용했기 때문이다.

Keywords

References

  1. Yoon, S., Hwang, B., 3D reconstruction Technologies using multi view images, Electronics and Telecommunications Research Institute, pp.136-145, 2012, 3.
  2. Um, G., Ahn, C., Lee, S., Kim, K., Lee, K., Multi-Depth Map Fusion Technique from Depth Camera and Multi-View Images, Journal of broadcast engineering, vol 9, no. 3, pp. 185-195, 2004, 9.
  3. Newcombe, Richard A., Izad, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges, S., Fitzagibbon, A,., KinectFusion: Real-Time Dense Surface Mapping and Tracking, Mixed and Augmented Reality (ISMAR), IEEE International Symposium on, pp. 127-136, Oct, 2011
  4. Lange, S., Sunderhauf, N., Neubert, P., Drews, S., Protzel, P., Advances in Autonomous Mini Robots: Autonomous corridor flight of a UAV using a low-cost and light-weight rgb-d camera, Springer Berlin Heidelberg, pp.183-192. 2012.
  5. Cui, Y., Schuon, S., Chan, D., Thrun, S., Theobalt, C., 3D Shape Scanning with a Time-of-Flight Camera. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 1173-1180, June, 2010.
  6. Yoon, S., Hwang, B., Kim, K., Lim, S., Choi, J., Koo, B., A Survey and Trends on 3D Face Reconstruction Technologies, 2012 Electronics and Telecommunications Trends, vol 2012, no. 2, pp. 12-21, 2012.
  7. Hansard, M., Lee, S., Choi, O., Horaud, R. P., Time of Flight Cameras: Principles, Methods, and Applications, Springer. pp. 95. 2012.
  8. Li, X., Guo, W., Li, M., Chen, C., Generating Colored Pointcloud Under the Calibration between TOF and RGB Cameras, Information and Automation (ICIA), 2013 IEEE International Conference on, pp. 483-488, Aug, 2013.
  9. Jung, H., Kim, T., Lyou, J., 3D Image Construction Using Color and Depth Cameras, Journal of the Institute of Electronics Engineers of Korea-System and Control, vol 49, no. 1, pp. 1-7, 2012, 1.
  10. Kwon, S., Lee, S., Son, K., Jeong, Y., Lee, S., High resolution 3D object generation with a DSLR and depth information by Kinect., Korean Society For Computer Game, vol 26, no. 1, pp. 221-227, 2013,3.
  11. Jorge J., The Levenberg-Marquardt Algorithm: Implementation and Theory, Springer Berlin Heidelberg, 1978.
  12. Lee, N., Park, S., Lee, S., Visualization of The Three Dimensional Information Using Stereo Camera, The journal of Korea Institute of Electronics Engineers-System and Control, vol 47, no. 4, pp. 15-20, 2010, 7.
  13. Zhang, Z., A Flexible New Technique for Camera Calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 22, no. 11, pp. 1330-1334, Nov, 2000. https://doi.org/10.1109/34.888718
  14. Kim, J., Kim, T., Precise Rectification of Misaligned Stereo Images for 3D Image Generation, Journal of broadcast engineering, vol 17, no. 2, pp. 411-421, 2012, 3. https://doi.org/10.5909/JEB.2012.17.2.411
  15. Kim, J., Kim, T., Development of Photogrammetric Rectification Method Applying Bayesian Approach for High Quality 3D Contents Production, Journal of broadcast engineering, vol 18, no. 1, pp. 31-42, 2013, 1 https://doi.org/10.5909/JBE.2013.18.1.31
  16. Lee, E., Ho, Y., Generation of high-quality depth maps using hybrid camera system for 3-D video, Journal of Visual Communication and Image Representation, vol 22, no. 1, pp. 73-84, 2011, 1 https://doi.org/10.1016/j.jvcir.2010.10.006