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Abstract
Nitrogen-doped microporous carbons were prepared using a polyvinylidene fluoride/
melamine mixture. The electrochemical performance of the nitrogen-doped microporous 
carbons after being subjected to different carbonization conditions was investigated. The 
nitrogen to carbon ratio and specific surface area decreased with an increase in the carbon-
ization temperature. However, the maximum specific capacitance of 208 F/g was obtained at 
a carbonization temperature of 800°C because it produced the highest microporosity. 
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1. Introduction

Supercapacitors are used for energy storage in various portable electronic devices and hy-
brid electric vehicles. They possess higher power and energy density, longer cycle life, and 
higher chemical stability compared to secondary batteries [1-3]. Recently, various carbon-
based electrodes have been employed in supercapacitors because of their good electrical 
conductivity and large pseudocapacitance; however, they exhibit low capacitance values 
[4-6]. To improve their capacitance, nitrogen-containing functional groups are incorporated 
into the carbon materials. The pseudocapacitance originates from the interaction between the 
nitrogen species and protons of the electrolyte [7-10].

Recent studies have revealed that mesopores and macropores in capacitor electrodes have 
limited capacitance [11,12]. The presence of narrow micropores is essential for the formation 
of an electrical double layer by solvated and desolvated ions. According to the literature, pore 
sizes ranging from 0.7-1.2 nm produce the optimum specific capacitance in aqueous electro-
lytes [13]. Therefore, producing microporous carbons with pore size in the abovementioned 
range is an effective way to improve the supercapacitor capacitance. Polyvinylidene fluoride 
(PVDF) is usually used as the polymer precursor for preparing the electrodes of supercapac-
itors. PVDF is converted to microporous carbon by carbonization without other activation 
methods. The microporous carbon has high specific surface area and potential. It also possesses 
narrow micropore distribution characteristics [14-17]. Melamine is a nitrogen rich compound, 
which is easy to handle. It is usually used for doping nitrogen functional groups. Nitrogen-
enriched carbons possess high specific surface area and specific capacitance [18-21]. Nitrogen 
in melamine-derived carbons exists mainly in pyridinic, quaternary, and oxidized forms. The 
oxidized nitrogen is the most stable and the pyridinic nitrogen affects the electron donor-accep-
tor characteristics of the carbon materials, which leads to pseudocapacitive attraction between 
the protons of the electrolyte and the carbon electrode materials [22]. At a high carbonization 
temperature, more stable nitrogens are produced by the carbonization of melamine [23,24].

In this study, nitrogen-functionalized microporous carbons were prepared by an activa-
tion-free method using the PVDF/melamine mixture as the carbon precursor. The effect 
of carbonization temperature on the electrochemical performance of the PVDF/melamine-
based electrode is discussed. 
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and pore volume of the samples studied were determined by 
nitrogen adsorption/desorption isotherms at 77 K. The textural 
properties determined by the BET results are shown in Table 1. 
The decrease in the specific surface area of the samples studied 
is attributed to the effect of carbonization temperature. The total 
pore volume also decreased. Therefore, the formation of the mi-
cropores could be easily controlled by the carbonization process. 
However, the highest micropore volume was obtained at 800°C. 
The PVDF/melamine 800 had the highest micropore volume 
(0.2202 cm3/g) and the lowest mesopore volume (0.1274 cm3/g), 
which is probably due to poor carbonization at the low tempera-
ture and the collapse of the micropores at the high temperature. 

The surface characteristics of the samples studied were 
analyzed by EA. As shown in Table 1, the content of nitrogen 
groups on the PVDF/melamine 700, 800, and 900 are 14.9, 13.4, 
and 12.9%, respectively. The nitrogen content decreased with 
the increasing carbonization temperature. The PVDF/melamine 
900 has the lowest nitrogen content (12.9%), which is probably 
due to the volatilization of the N/C species at elevated carbon-
ization temperatures [31].

Fig. 1 shows the CV of the samples studied using 6.0 M po-

2. Experimental

2.1. Materials and preparation

PVDF (Aldrich) and melamine (Aldrich) were used as the 
precursors for the nitrogen-functionalized microporous carbons. 
A mixture containing 1:0.5 ratio of the PVDF/melamine was put 
into a muffle furnace and was stabilized at 200°C in air for 2 h. 
Then, carbonization was carried out at 700-900°C for 2 h in a 
tubular furnace under nitrogen gas with a heating rate of 5°C/
min and a nitrogen flow rate of 200 mL/min [6,25]. The samples 
were named PVDF/melamine 700, 800 and 900, where 700, 
800, and 900 represent the carbonization temperature.

2.2. Measurements

The surface characterization was performed by elemental analysis 
(EA). The textural characteristics of the PMs were analyzed at 77 K 
using a gas adsorption analyzer (BELSORP, BEL Japan). The specific 
surface areas and micropore volumes of the samples were determined 
from the Brunauer-Emmett-Teller (BET) and Dubinin-Radushkevich 
(D-R) equations. The electrochemical performance was character-
ized by cyclic voltammetry (CV) and galvanostatic charge/discharge 
measurements using a three-electrode electrochemical cell. The three-
electrode cell consisted of a Pt wire as the counter electrode, Ag/AgCl 
as the reference electrode, and Ni foam coated with the samples as the 
working electrode. The specific capacitances of the samples studied 
were estimated according to the following Eq. (1) [26,27]:

  (1)

where C is the capacitance of the cell, I the discharge current, Dt 
the discharge time, DV the voltage range, and m the mass of the 
active material on the electrode [28-30].

3. Results and Discussion

PVDF was used to obtain porous carbons by carbonization in 
the absence of an activation process. The specific surface area 

Table 1. Chemical compositions and textural properties of the samples studied

Textural properties Chemical compositions

SBET
a) Vtotal

b) Vmeso
c) Vmicro

d) Fmicro
e) C f) N g) N/C h)

PVDF/melamine 700 654 0.3514 0.1426 0.2088 59.42 75.40 14.89 0.1974

PVDF/melamine 800 638 0.3476 0.1274 0.2202 63.35 78.30 13.44 0.1717

PVDF/melamine 900 541 0.3027 0.1344 0.1683 55.60 78.68 12.87 0.1636

BET: Brunauer-Emmett-Teller, PVDF: polyvinylidene fluoride.
a)Specific surface area (m2g-1).
b)Total pore volume (cm3g-1).
c)Mesopore volume (cm3g-1).
d)Micropore volume (cm3g-1).
e)(Micropore volume/total pore volume) × 100 (%).
f)Content of carbon (at%).
g)Content of nitrogen (at%).
h)Content of nitrogen/content of carbon.

Fig. 1. Cyclic voltammetry of samples studied at 50 mV/s. PVDF: polyvi-
nylidene fluoride.
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