DOI QR코드

DOI QR Code

Overlook of current chemical vapor deposition-grown large single-crystal graphene domains

  • Park, Kyung Tae (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Taehoon (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University) ;
  • Park, Chong Rae (Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University)
  • Received : 2014.03.21
  • Accepted : 2014.06.25
  • Published : 2014.07.31

Abstract

Exceptional progress has been made with chemical vapor deposition (CVD) of graphene in the past few years. Not only has good monolayer growth of graphene been achieved, but large-area synthesis of graphene sheets has been successful too. However, the polycrystalline nature of CVD graphene is hampering further progress as graphene property degrades due to presence of grain boundaries. This review will cover factors that affect nucleation of graphene and how other scientists sought to obtain large graphene domains. In addition, the limitation of the current research trend will be touched upon as well.

Keywords

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  2. Choi YY, Kang SJ, Kim HK, Choi WM, Na SI. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol Energy Mater Sol Cells, 96, 281 (2012). http://dx.doi.org/10.1016/j.solmat.2011.09.031.
  3. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  4. Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 8, 323 (2007). http://dx.doi.org/10.1021/nl072838r.
  5. Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson ND. Graphene and mobile ions: the key to all-plastic, solutionprocessed light-emitting devices. ACS Nano, 4, 637 (2010). http://dx.doi.org/10.1021/nn9018569.
  6. Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene fieldeffect device. IEEE Electron Device Lett, 28, 282 (2007). http://dx.doi.org/10.1109/LED.2007.891668.
  7. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22, 1027 (2010). http://dx.doi.org/10.1002/elan.200900571.
  8. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967.
  9. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.
  10. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, March-enkov AN, Conrad EH, First PN, de Heer WA. Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphenebased nanoelectronics. J Phys Chem B, 108, 19912 (2004). http://dx.doi.org/10.1021/jp040650f.
  11. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2008). http://dx.doi.org/10.1021/nl801827v.
  12. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei SS. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett, 93, 113103 (2008). http://dx.doi.org/10.1063/1.2982585.
  13. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.
  14. Choi WJ, Chung YJ, Park S, Yang CS, Lee YK, An KS, Lee YS, Lee JO. A simple method for cleaning graphene surfaces with an electrostatic force. Adv Mater, 26, 637 (2014). http://dx.doi.org/10.1002/adma.201303199.
  15. Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater, 10, 443 (2011). http://dx.doi.org/10.1038/nmat3010.
  16. Kobayashi T, Bando M, Kimura N, Shimizu K, Kadono K, Umezu N, Miyahara K, Hayazaki S, Nagai S, Mizuguchi Y, Murakami Y, Hobara D. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl Phys Lett, 102, 023112 (2013). http://dx.doi.org/10.1063/1.4776707.
  17. Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 8, 950 (2013). http://dx.doi.org/10.1021/nn405754d.
  18. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.
  19. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS. Intrinsic and extrinsic performance limits of graphene devices on $SiO_2$. Nat Nano, 3, 206 (2008). http://dx.doi.org/10.1038/nnano.2008.58.
  20. Zhou H, Yu WJ, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat Commun, 4, 2096 (2013). http://dx.doi.org/10.1038/ncomms3096.
  21. Sutter P, Sadowski JT, Sutter E. Graphene on Pt(111): growth and substrate interaction. Phys Rev B, 80, 245411 (2009). http://dx.doi.org/10.1103/PhysRevB.80.245411.
  22. Coraux J, N'Diaye AT, Busse C, Michely T. Structural coherency of graphene on Ir(111). Nano Lett, 8, 565 (2008). http://dx.doi.org/10.1021/nl0728874.
  23. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.
  24. Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett, 9, 4268 (2009). http://dx.doi.org/10.1021/nl902515k.
  25. Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C. Comparison of graphene growth on singlecrystalline and polycrystalline ni by chemical vapor deposition. J Phys Chem Lett, 1, 3101 (2010). http://dx.doi.org/10.1021/jz1011466.
  26. Iwasaki T, Park HJ, Konuma M, Lee DS, Smet JH, Starke U. Longrange ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Lett, 11, 79 (2010). http://dx.doi.org/10.1021/nl102834q.
  27. Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao HJ. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv Mater, 21, 2777 (2009). http://dx.doi.org/10.1002/adma.200800761.
  28. Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, Hirjibehedin CF, Chhowalla M, Saiz E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 6, 3614 (2012). http://dx.doi.org/10.1021/nn3008965.
  29. Robertson AW, Warner JH. Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett, 11, 1182 (2011). http://dx.doi.org/10.1021/nl104142k.
  30. Ambrosi A, Bonanni A, Sofer Z, Pumera M. Large-scale quantification of CVD graphene surface coverage. Nanoscale, 5, 2379 (2013). http://dx.doi.org/10.1039/C3NR33824J.
  31. Bhaviripudi S, Jia X, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 10, 4128 (2010). http://dx.doi.org/10.1021/nl102355e.
  32. Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano, 6, 9110 (2012). http://dx.doi.org/10.1021/nn303352k.
  33. Wu Y, Hao Y, Jeong HY, Lee Z, Chen S, Jiang W, Wu Q, Piner RD, Kang J, Ruoff RS. Crystal structure evolution of individual graphene islands during CVD growth on copper foil. Adv Mater, 25, 6744 (2013). http://dx.doi.org/10.1002/adma.201302208.
  34. Bartelt NC, McCarty KF. Graphene growth on metal surfaces. MRS Bull, 37, 1158 (2012). http://dx.doi.org/10.1557/mrs.2012.237.
  35. Venables JA, Spiller GDT, Hanbucken M. Nucleation and growth of thin films. Rep Prog Phys, 47, 399 (1984). http://dx.doi.org/10.1088/0034-4885/47/4/002.
  36. Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B. High quality graphene synthesized by atmospheric pressure CVD on copper foil. Surf Coat Technol, 230, 87 (2013). http://dx.doi.org/10.1016/j.surfcoat.2013.06.050.
  37. Kalbac M, Frank O, Kavan L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon, 50, 3682 (2012). http://dx.doi.org/10.1016/j.carbon.2012.03.041.
  38. Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 5, 6069 (2011). http://dx.doi.org/10.1021/nn201978y.
  39. Losurdo M, Giangregorio MM, Capezzuto P, Bruno G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys, 13, 20836 (2011). http://dx.doi.org/10.1039/C1CP22347J.
  40. Geng D, Wu B, Guo Y, Luo B, Xue Y, Chen J, Yu G, Liu Y. Fractal etching of graphene. J Am Chem Soc, 135, 6431 (2013). http://dx.doi.org/10.1021/ja402224h.
  41. Zhang Y, Li Z, Kim P, Zhang L, Zhou C. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano, 6, 126 (2011). http://dx.doi.org/10.1021/nn202996r.
  42. Liu W, Li H, Xu C, Khatami Y, Banerjee K. Synthesis of highquality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon, 49, 4122 (2011). http://dx.doi.org/10.1016/j.carbon.2011.05.047.
  43. Han GH, Gunes F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi JY, Pribat D, Lee YH. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett, 11, 4144 (2011). http://dx.doi.org/10.1021/nl201980p.
  44. Zhang B, Lee WH, Piner R, Kholmanov I, Wu Y, Li H, Ji H, Ruoff RS. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano, 6, 2471 (2012). http://dx.doi.org/10.1021/nn204827h.
  45. Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater, 23, 1441 (2011). http://dx.doi.org/10.1021/cm1028854.
  46. Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang WJ. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J Am Chem Soc, 134, 3627 (2012). http://dx.doi.org/10.1021/ja2105976.
  47. Rasool HI, Song EB, Allen MJ, Wassei JK, Kaner RB, Wang KL, Weiller BH, Gimzewski JK. Continuity of graphene on polycrystalline copper. Nano Lett, 11, 251 (2010). http://dx.doi.org/10.1021/nl1036403.
  48. Edwards RS, Coleman KS. Graphene film growth on polycrystalline metals. Acc Chem Res, 46, 23 (2012). http://dx.doi.org/10.1021/ar3001266.
  49. Murdock AT, Koos A, Britton TB, Houben L, Batten T, Zhang T, Wilkinson AJ, Dunin-Borkowski RE, Lekka CE, Grobert N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano, 7, 1351 (2013). http://dx.doi.org/10.1021/nn3049297.
  50. Chatain D, Wynblatt P, Rohrer GS. Anisotropic phenomena at interfaces in bismuth-saturated copper. Scripta Mater, 50, 565 (2004). http://dx.doi.org/10.1016/j.scriptamat.2003.11.058.
  51. Wofford JM, Nie S, McCarty KF, Bartelt NC, Dubon OD. Graphene islands on Cu foils: the interplay between shape, orientation, and defects. Nano Lett, 10, 4890 (2010). http://dx.doi.org/10.1021/nl102788f.
  52. Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett, 11, 4547 (2011). http://dx.doi.org/10.1021/nl201566c.
  53. Zhang W, Wu P, Li Z, Yang J. First-principles thermodynamics of graphene growth on Cu surfaces. J Phys Chem C, 115, 17782 (2011). http://dx.doi.org/10.1021/jp2006827.
  54. Hansen L, Stoltze P, Jacobsen KW, Nørskov JK. Self-diffusion on copper surfaces. Phys Rev B, 44, 6523 (1991). http://dx.doi.org/10.1103/PhysRevB.44.6523.
  55. Kim DW, Lee J, Kim SJ, Jeon S, Jung HT. The effects of the crystalline orientation of Cu domains on the formation of nanoripple arrays in CVD-grown graphene on Cu. J Mater Chem C, 1, 7819 (2013). http://dx.doi.org/10.1039/C3TC31717J.
  56. Wu YA, Fan Y, Speller S, Creeth GL, Sadowski JT, He K, Robertson AW, Allen CS, Warner JH. Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano, 6, 5010 (2012). http://dx.doi.org/10.1021/nn3016629.
  57. Mohsin A, Liu L, Liu P, Deng W, Ivanov IN, Li G, Dyck OE, Duscher G, Dunlap JR, Xiao K, Gu G. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano, 7, 8924 (2013). http://dx.doi.org/10.1021/nn4034019.
  58. Gan L, Luo Z. Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper. ACS Nano, 7, 9480 (2013). http://dx.doi.org/10.1021/nn404393b.
  59. Yamukyan MH, Manukyan KV, Kharatyan SL. Copper oxide reduction by hydrogen under the self-propagation reaction mode. J Alloys Compd, 473, 546 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.06.031.
  60. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang YW, Kim P, Hone J, Colombo L, Ruoff RS. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science, 342, 720 (2013). http://dx.doi.org/10.1126/science.1243879.
  61. Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P. Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C, 117, 18919 (2013). http://dx.doi.org/10.1021/jp4047648.
  62. Karabacak T, DeLuca JS, Wang PI, Eyck GAT, Ye D, Wang GC, Lu TM. Low temperature melting of copper nanorod arrays. J Appl Phys, 99, 064304 (2006). http://dx.doi.org/10.1063/1.2180437.
  63. Kidambi PR, Ducati C, Dlubak B, Gardiner D, Weatherup RS, Martin MB, Seneor P, Coles H, Hofmann S. The parameter space of graphene chemical vapor deposition on polycrystalline Cu. J Phys Chem C, 116, 22492 (2012). http://dx.doi.org/10.1021/jp303597m.
  64. Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M. Triggering the continuous growth of graphene toward millimeter-sized grains. Adv Funct Mater, 23, 198 (2013). http://dx.doi.org/10.1002/adfm.201201577.
  65. Wu W, Jauregui LA, Su Z, Liu Z, Bao J, Chen YP, Yu Q. Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv Mater, 23, 4898 (2011). http://dx.doi.org/10.1002/adma.201102456.