DOI QR코드

DOI QR Code

바이오 기반 경제를 위한 해조류 유래 바이오 연료 생산

Biofuel production from macroalgae toward bio-based economy

  • 임현규 (포항공과대학교 대학원 화학공학과) ;
  • 곽동훈 (포항공과대학교 대학원 시스템생명공학부) ;
  • 정규열 (포항공과대학교 대학원 화학공학과)
  • 투고 : 2014.07.02
  • 심사 : 2014.07.08
  • 발행 : 2014.06.30

초록

Macroalgae has been strongly touted as an alternative biomass for biofuel production due to its higher photosynthetic efficiency, carbon fixation rate, and growth rate compared to conventional cellulosic plants. However, its unique carbohydrate composition and structure limits the utilization efficiency by conventional microorganisms, resulting in reduced growth rates and lower productivity. Nevertheless, recent studies have shown that it is possible to enable microorganisms to utilize various sugars from seaweeds and to produce some energy chemicals such as methane, ethanol, etc. This paper introduces the basic information on macroalgae and the overall conversion process from harvest to production of biofuels. Especially, we will review the successful efforts on microbial engineering through metabolic engineering and synthetic biology to utilize carbon sources from red and brown seaweed.

키워드

참고문헌

  1. Zhang, F, Rodriguez, S, Keasling, JD. 2011. Metabolic engineering of microbial pathways for advanced biofuels production. Metab. Eng., 22, 775-783.
  2. Choi, YJ, Lee, SY. 2013. Microbial production of short-chain alkanes. Nature, 502, 571-574. https://doi.org/10.1038/nature12536
  3. Rathnasingh, C, Raj, SM, Jo, J-E, Park, S. 2009. Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol. Bioeng., 104, 729-739.
  4. Du, J, Shao, Z, Zhao, H. 2011. Engineering microbial factories for synthesis of value-added products. J. Ind. Microbiol. Biot., 38, 873-890. https://doi.org/10.1007/s10295-011-0970-3
  5. Wei, N, Quarterman, J, Jin, Y-S. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol., 31, 70-77. https://doi.org/10.1016/j.tibtech.2012.10.009
  6. Tenenbaum, DJ. 2008. Food vs. Fuel: Diversion of Crops Could Cause More Hunger. Environ. Health Perspect., 116, A254-A257. https://doi.org/10.1289/ehp.116-a254
  7. G. Cassman, K, Liska, AJ. 2007. Food and fuel for all: realistic or foolish? Biofuel. Bioprod. Bior., 1, 18-23. https://doi.org/10.1002/bbb.3
  8. Kondo, A, Ishii, J, Hara, KY, Hasunuma, T, Matsuda, F. 2013. Development of microbial cell factories for biorefinery through synthetic bioengineering. J. Biotechnol., 163, 204-216. https://doi.org/10.1016/j.jbiotec.2012.05.021
  9. Olson, DG, McBride, JE, Joe Shaw, A, Lynd, LR. 2012. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol., 23, 396-405. https://doi.org/10.1016/j.copbio.2011.11.026
  10. Singhvi, MS, Chaudhari, S, Gokhale, DV. 2014. Lignocellulose processing: a current challenge. RSC Advances, 4, 8271-8277. https://doi.org/10.1039/c3ra46112b
  11. Jonsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels, 6, 13. https://doi.org/10.1186/1754-6834-6-13
  12. Frei, M. 2013. Lignin: Characterization of a Multifaceted Crop Component. Sci. World. J., 2013, 25.
  13. Himmel, ME, Ding, S-Y, Johnson, DK, Adney, WS, Nimlos, MR, Brady, JW, Foust, TD. 2007. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science, 315, 804-807. https://doi.org/10.1126/science.1137016
  14. Mata, TM, Martins, AA, Caetano, NS. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev., 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  15. John, RP, Anisha, GS, Nampoothiri, KM, Pandey, A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol., 102, 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  16. FAO. Yearbook of Fishery statistics - aquaculture production, 2010. Food and Agriculture Organization of the United Nations, Rome
  17. Ryu, JG, Cho, JH, Kim, DY. 2009. Strategies to Industrialize the Algae Bio-business and Policy Direction. Korea Maritime Institute, Korea
  18. Gao, K, McKinley, K. 1994. Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol., 6, 45-60. https://doi.org/10.1007/BF02185904
  19. Roesijadi G, SBJ, LJ Snowden-Swan, Y Zhu. 2010. Macroalgae as a Biomass Feedstock: A Preliminary Analysis. Pacific Northwest National Laboratory, PNNL-19944.
  20. Hughes, AD, Kelly, MS, Black, KD, Stanley, MS. 2012. Biogas from Macroalgae: is it time to revisit the idea? Biotechnol. Biofuels, 5, 86. https://doi.org/10.1186/1754-6834-5-86
  21. Daroch, M, Geng, S, Wang, G. 2013. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy, 102, 1371-1381. https://doi.org/10.1016/j.apenergy.2012.07.031
  22. Gorke, B, Stulke, J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Micro., 6, 613-624. https://doi.org/10.1038/nrmicro1932
  23. Vinuselvi, P, Kim, MK, Lee, SK, Ghim, CM. 2012. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep., 45, 59-70. https://doi.org/10.5483/BMBRep.2012.45.2.59
  24. Lim, JH, Seo, SW, Kim, SY, Jung, GY. 2013. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab. Eng., 20, 56-62. https://doi.org/10.1016/j.ymben.2013.09.003
  25. Lim, HG, Seo, SW, Jung, GY. 2013. Engineered Escherichia coli for simultaneous utilization of galactose and glucose. Bioresour. Technol., 135, 564-567. https://doi.org/10.1016/j.biortech.2012.10.124
  26. Adams, JMM, Toop, TA, Donnison, IS, Gallagher, JA. 2011. Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol., 102, 9976-9984. https://doi.org/10.1016/j.biortech.2011.08.032
  27. S. Kaehler, RK. 1996. Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong. Bot. Mar., 39, 11-17.
  28. Lindsey Zemke-White, W, Ohno, M. 1999. World seaweed utilisation: An end-of-century summary. J. Appl. Phycol., 11, 369-376. https://doi.org/10.1023/A:1008197610793
  29. Tom Bruton, HL, Yannick Lerat, Michele Stanley, Michael Bo Rasmussen. 2009. A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland. Sustainable Energy Ireland, Ireland
  30. Talebnia, F, Karakashev, D, Angelidaki, I. 2010. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol., 101, 4744-4753. https://doi.org/10.1016/j.biortech.2009.11.080
  31. Jeong, TS, Choi, CH, Lee, JY, Oh, KK. 2012. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Bioresour. Technol., 116, 435-440. https://doi.org/10.1016/j.biortech.2012.03.104
  32. Park, J-H, Hong, J-Y, Jang, HC, Oh, SG, Kim, S-H, Yoon, J-J, Kim, YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol., 108, 83-88. https://doi.org/10.1016/j.biortech.2011.12.065
  33. Park, H, Kam, N, Lee, E, Kim, H. 2012. Cloning and Characterization of a Novel Oligoalginate Lyase from a Newly Isolated Bacterium Sphingomonas sp. MJ-3. Mar. Biotechnol., 14, 189-202. https://doi.org/10.1007/s10126-011-9402-7
  34. Wong, TY, Preston, LA, Schiller, NL. 2000. ALGINATE LYASE: Review of Major Sources and Enzyme Characteristics, Structure-Function Analysis, Biological Roles, and Applications. Annu. Rev. Microbiol., 54, 289-340. https://doi.org/10.1146/annurev.micro.54.1.289
  35. Jang, J-S, Cho, Y, Jeong, G-T, Kim, S-K. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng, 35, 11-18. https://doi.org/10.1007/s00449-011-0611-2
  36. Martin, M, Portetelle, D, Michel, G, Vandenbol, M. 2014. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl. Microbiol. Biotechnol., 98, 2917-2935. https://doi.org/10.1007/s00253-014-5557-2
  37. Holden, HM, Rayment, I, Thoden, JB. 2003. Structure and Function of Enzymes of the Leloir Pathway for Galactose Metabolism. J. Biol. Chem., 278, 43885-43888. https://doi.org/10.1074/jbc.R300025200
  38. Vivekanand, V, Eijsink, VH, Horn, S. 2012. Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J. Appl. Phycol., 24, 1295-1301. https://doi.org/10.1007/s10811-011-9779-8
  39. Park, J-H, Yoon, J-J, Park, H-D, Lim, DJ, Kim, S-H. 2012. Anaerobic digestibility of algal bioethanol residue. Bioresour. Technol., 113, 78-82. https://doi.org/10.1016/j.biortech.2011.12.123
  40. Meinita, M, Kang, J-Y, Jeong, G-T, Koo, H, Park, S, Hong, Y-K. 2012. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii(cottonii). J. Appl. Phycol., 24, 857-862. https://doi.org/10.1007/s10811-011-9705-0
  41. Kim, Y, Kim, D, Kim, T, Shin, MK, Kim, YJ, Yoon, JJ, Chang, IS. 2013. Use of red algae, Ceylon moss (Gelidium amansii), hydrolyzate for clostridial fermentation. Biomass Bioenerg, 56, 38-42. https://doi.org/10.1016/j.biombioe.2013.04.024
  42. Lee, KS, Hong, ME, Jung, SC, Ha, SJ, Yu, BJ, Koo, HM, Park, SM, Seo, JH, Kweon, DH, Park, JC, Jin, YS. 2011. Improved Galactose Fermentation of Saccharomyces cerevisiae Through Inverse Metabolic Engineering. Biotechnol. Bioeng., 108, 621-631. https://doi.org/10.1002/bit.22988
  43. Ostergaard, S, Olsson, L, Johnston, M, Nielsen, J. 2000. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL generegulatory network. Nat. Biotech., 18, 1283-1286. https://doi.org/10.1038/82400
  44. Kim, N-J, Li, H, Jung, K, Chang, HN, Lee, PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol., 102, 7466-7469. https://doi.org/10.1016/j.biortech.2011.04.071
  45. Kim, SR, Ha, S-J, Wei, N, Oh, EJ, Jin, Y-S. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol., 30, 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
  46. Ha, S-J, Wei, Q, Kim, SR, Galazka, JM, Cate, J, Jin, Y-S. 2011. Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain. Appl. Environ. Microbiol., 77, 5822-5825. https://doi.org/10.1128/AEM.05228-11
  47. Vinuselvi, P, Lee, SK. 2012. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb. Technol., 50, 1-4. https://doi.org/10.1016/j.enzmictec.2011.10.001
  48. Seo, SW, Yang, J-S, Kim, I, Yang, J, Min, BE, Kim, S, Jung, GY. 2013. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng., 15, 67-74. https://doi.org/10.1016/j.ymben.2012.10.006
  49. Lian, J, Chao, R, Zhao, H. 2014. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab. Eng., 23, 92-99. https://doi.org/10.1016/j.ymben.2014.02.003
  50. Yun, EJ, Shin, MH, Yoon, J-J, Kim, YJ, Choi, I-G, Kim, KH. 2011. Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem., 46, 88-93. https://doi.org/10.1016/j.procbio.2010.07.019
  51. Yun, E, Lee, S, Kim, J, Kim, B, Kim, H, Lee, S, Pelton, J, Kang, N, Choi, I-G, Kim, K. 2013. Enzymatic production of 3,6-anhydro-l-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol., 97, 2961-2970. https://doi.org/10.1007/s00253-012-4184-z
  52. Wargacki, AJ, Leonard, E, Win, MN, Regitsky, DD, Santos, CNS, Kim, PB, Cooper, SR, Raisner, RM, Herman, A, Sivitz, AB, et al. 2012. An Engineered Microbial Plat form for Direct Biofuel Production from Brown Macroalgae. Science, 335, 308-313. https://doi.org/10.1126/science.1214547
  53. Adams, J, Gallagher, J, Donnison, I. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol., 21, 569-574. https://doi.org/10.1007/s10811-008-9384-7
  54. Horn, SJ, Aasen, IM, Ostgaard, K. 2000. Ethanol production from seaweed extract. J. Ind. Microbiol. Biot., 25, 249-254. https://doi.org/10.1038/sj.jim.7000065
  55. Lee, S-M, Lee, J-H. 2012. Ethanol fermentation for main sugar components of brown-algae using various yeasts. J. Ind. Eng. Chem., 18, 16-18. https://doi.org/10.1016/j.jiec.2011.11.097
  56. Takeda, H, Yoneyama, F, Kawai, S, Hashimoto, W, Murata, K. 2011. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ. Sci., 4, 2575-2581. https://doi.org/10.1039/c1ee01236c
  57. Hashimoto, W, Yamasaki, M, Itoh, T, Momma, K, Mikami, B, Murata, K. 2004. Super-channel in bacteria: Structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. J. Biosci. Bioeng., 98, 399-413. https://doi.org/10.1016/S1389-1723(05)00304-X
  58. Enquist-Newman, M, Faust, AME, Bravo, DD, Santos, CNS, Raisner, RM, Hanel, A, Sarvabhowman, P, Le, C, Regitsky, DD, Cooper, SR, et al. 2014. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 505, 239-243. https://doi.org/10.1038/nature12771
  59. Quain, DE, Boulton, CA. 1987. Growth and Metabolism of Mannitol by Strains of Saccharomyces cerevisiae. J. Gen. Microbio., 133, 1675-1684.
  60. Berrios-Rivera, SJ, Bennett, G. N., San, K. 2002. Metabolic Engineering of Escherichia coli: Increase of NADH Availability by Overexpressing an NAD+-Dependent Formate Dehydrogenase. Metab. Eng., 4, 217-229. https://doi.org/10.1006/mben.2002.0227

피인용 문헌

  1. Synthetic redesign of Escherichia coli for cadaverine production from galactose vol.10, pp.1, 2017, https://doi.org/10.1186/s13068-017-0707-2