References
- Zhang, F, Rodriguez, S, Keasling, JD. 2011. Metabolic engineering of microbial pathways for advanced biofuels production. Metab. Eng., 22, 775-783.
- Choi, YJ, Lee, SY. 2013. Microbial production of short-chain alkanes. Nature, 502, 571-574. https://doi.org/10.1038/nature12536
- Rathnasingh, C, Raj, SM, Jo, J-E, Park, S. 2009. Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol. Bioeng., 104, 729-739.
- Du, J, Shao, Z, Zhao, H. 2011. Engineering microbial factories for synthesis of value-added products. J. Ind. Microbiol. Biot., 38, 873-890. https://doi.org/10.1007/s10295-011-0970-3
- Wei, N, Quarterman, J, Jin, Y-S. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol., 31, 70-77. https://doi.org/10.1016/j.tibtech.2012.10.009
- Tenenbaum, DJ. 2008. Food vs. Fuel: Diversion of Crops Could Cause More Hunger. Environ. Health Perspect., 116, A254-A257. https://doi.org/10.1289/ehp.116-a254
- G. Cassman, K, Liska, AJ. 2007. Food and fuel for all: realistic or foolish? Biofuel. Bioprod. Bior., 1, 18-23. https://doi.org/10.1002/bbb.3
- Kondo, A, Ishii, J, Hara, KY, Hasunuma, T, Matsuda, F. 2013. Development of microbial cell factories for biorefinery through synthetic bioengineering. J. Biotechnol., 163, 204-216. https://doi.org/10.1016/j.jbiotec.2012.05.021
- Olson, DG, McBride, JE, Joe Shaw, A, Lynd, LR. 2012. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol., 23, 396-405. https://doi.org/10.1016/j.copbio.2011.11.026
- Singhvi, MS, Chaudhari, S, Gokhale, DV. 2014. Lignocellulose processing: a current challenge. RSC Advances, 4, 8271-8277. https://doi.org/10.1039/c3ra46112b
- Jonsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels, 6, 13. https://doi.org/10.1186/1754-6834-6-13
- Frei, M. 2013. Lignin: Characterization of a Multifaceted Crop Component. Sci. World. J., 2013, 25.
- Himmel, ME, Ding, S-Y, Johnson, DK, Adney, WS, Nimlos, MR, Brady, JW, Foust, TD. 2007. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science, 315, 804-807. https://doi.org/10.1126/science.1137016
- Mata, TM, Martins, AA, Caetano, NS. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev., 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- John, RP, Anisha, GS, Nampoothiri, KM, Pandey, A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol., 102, 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
- FAO. Yearbook of Fishery statistics - aquaculture production, 2010. Food and Agriculture Organization of the United Nations, Rome
- Ryu, JG, Cho, JH, Kim, DY. 2009. Strategies to Industrialize the Algae Bio-business and Policy Direction. Korea Maritime Institute, Korea
- Gao, K, McKinley, K. 1994. Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol., 6, 45-60. https://doi.org/10.1007/BF02185904
- Roesijadi G, SBJ, LJ Snowden-Swan, Y Zhu. 2010. Macroalgae as a Biomass Feedstock: A Preliminary Analysis. Pacific Northwest National Laboratory, PNNL-19944.
- Hughes, AD, Kelly, MS, Black, KD, Stanley, MS. 2012. Biogas from Macroalgae: is it time to revisit the idea? Biotechnol. Biofuels, 5, 86. https://doi.org/10.1186/1754-6834-5-86
- Daroch, M, Geng, S, Wang, G. 2013. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy, 102, 1371-1381. https://doi.org/10.1016/j.apenergy.2012.07.031
- Gorke, B, Stulke, J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Micro., 6, 613-624. https://doi.org/10.1038/nrmicro1932
- Vinuselvi, P, Kim, MK, Lee, SK, Ghim, CM. 2012. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep., 45, 59-70. https://doi.org/10.5483/BMBRep.2012.45.2.59
- Lim, JH, Seo, SW, Kim, SY, Jung, GY. 2013. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab. Eng., 20, 56-62. https://doi.org/10.1016/j.ymben.2013.09.003
- Lim, HG, Seo, SW, Jung, GY. 2013. Engineered Escherichia coli for simultaneous utilization of galactose and glucose. Bioresour. Technol., 135, 564-567. https://doi.org/10.1016/j.biortech.2012.10.124
- Adams, JMM, Toop, TA, Donnison, IS, Gallagher, JA. 2011. Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol., 102, 9976-9984. https://doi.org/10.1016/j.biortech.2011.08.032
- S. Kaehler, RK. 1996. Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong. Bot. Mar., 39, 11-17.
- Lindsey Zemke-White, W, Ohno, M. 1999. World seaweed utilisation: An end-of-century summary. J. Appl. Phycol., 11, 369-376. https://doi.org/10.1023/A:1008197610793
- Tom Bruton, HL, Yannick Lerat, Michele Stanley, Michael Bo Rasmussen. 2009. A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland. Sustainable Energy Ireland, Ireland
- Talebnia, F, Karakashev, D, Angelidaki, I. 2010. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol., 101, 4744-4753. https://doi.org/10.1016/j.biortech.2009.11.080
- Jeong, TS, Choi, CH, Lee, JY, Oh, KK. 2012. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Bioresour. Technol., 116, 435-440. https://doi.org/10.1016/j.biortech.2012.03.104
- Park, J-H, Hong, J-Y, Jang, HC, Oh, SG, Kim, S-H, Yoon, J-J, Kim, YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol., 108, 83-88. https://doi.org/10.1016/j.biortech.2011.12.065
- Park, H, Kam, N, Lee, E, Kim, H. 2012. Cloning and Characterization of a Novel Oligoalginate Lyase from a Newly Isolated Bacterium Sphingomonas sp. MJ-3. Mar. Biotechnol., 14, 189-202. https://doi.org/10.1007/s10126-011-9402-7
- Wong, TY, Preston, LA, Schiller, NL. 2000. ALGINATE LYASE: Review of Major Sources and Enzyme Characteristics, Structure-Function Analysis, Biological Roles, and Applications. Annu. Rev. Microbiol., 54, 289-340. https://doi.org/10.1146/annurev.micro.54.1.289
- Jang, J-S, Cho, Y, Jeong, G-T, Kim, S-K. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng, 35, 11-18. https://doi.org/10.1007/s00449-011-0611-2
- Martin, M, Portetelle, D, Michel, G, Vandenbol, M. 2014. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl. Microbiol. Biotechnol., 98, 2917-2935. https://doi.org/10.1007/s00253-014-5557-2
- Holden, HM, Rayment, I, Thoden, JB. 2003. Structure and Function of Enzymes of the Leloir Pathway for Galactose Metabolism. J. Biol. Chem., 278, 43885-43888. https://doi.org/10.1074/jbc.R300025200
- Vivekanand, V, Eijsink, VH, Horn, S. 2012. Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J. Appl. Phycol., 24, 1295-1301. https://doi.org/10.1007/s10811-011-9779-8
- Park, J-H, Yoon, J-J, Park, H-D, Lim, DJ, Kim, S-H. 2012. Anaerobic digestibility of algal bioethanol residue. Bioresour. Technol., 113, 78-82. https://doi.org/10.1016/j.biortech.2011.12.123
- Meinita, M, Kang, J-Y, Jeong, G-T, Koo, H, Park, S, Hong, Y-K. 2012. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii(cottonii). J. Appl. Phycol., 24, 857-862. https://doi.org/10.1007/s10811-011-9705-0
- Kim, Y, Kim, D, Kim, T, Shin, MK, Kim, YJ, Yoon, JJ, Chang, IS. 2013. Use of red algae, Ceylon moss (Gelidium amansii), hydrolyzate for clostridial fermentation. Biomass Bioenerg, 56, 38-42. https://doi.org/10.1016/j.biombioe.2013.04.024
- Lee, KS, Hong, ME, Jung, SC, Ha, SJ, Yu, BJ, Koo, HM, Park, SM, Seo, JH, Kweon, DH, Park, JC, Jin, YS. 2011. Improved Galactose Fermentation of Saccharomyces cerevisiae Through Inverse Metabolic Engineering. Biotechnol. Bioeng., 108, 621-631. https://doi.org/10.1002/bit.22988
- Ostergaard, S, Olsson, L, Johnston, M, Nielsen, J. 2000. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL generegulatory network. Nat. Biotech., 18, 1283-1286. https://doi.org/10.1038/82400
- Kim, N-J, Li, H, Jung, K, Chang, HN, Lee, PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol., 102, 7466-7469. https://doi.org/10.1016/j.biortech.2011.04.071
- Kim, SR, Ha, S-J, Wei, N, Oh, EJ, Jin, Y-S. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol., 30, 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
- Ha, S-J, Wei, Q, Kim, SR, Galazka, JM, Cate, J, Jin, Y-S. 2011. Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain. Appl. Environ. Microbiol., 77, 5822-5825. https://doi.org/10.1128/AEM.05228-11
- Vinuselvi, P, Lee, SK. 2012. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb. Technol., 50, 1-4. https://doi.org/10.1016/j.enzmictec.2011.10.001
- Seo, SW, Yang, J-S, Kim, I, Yang, J, Min, BE, Kim, S, Jung, GY. 2013. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng., 15, 67-74. https://doi.org/10.1016/j.ymben.2012.10.006
- Lian, J, Chao, R, Zhao, H. 2014. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab. Eng., 23, 92-99. https://doi.org/10.1016/j.ymben.2014.02.003
- Yun, EJ, Shin, MH, Yoon, J-J, Kim, YJ, Choi, I-G, Kim, KH. 2011. Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem., 46, 88-93. https://doi.org/10.1016/j.procbio.2010.07.019
- Yun, E, Lee, S, Kim, J, Kim, B, Kim, H, Lee, S, Pelton, J, Kang, N, Choi, I-G, Kim, K. 2013. Enzymatic production of 3,6-anhydro-l-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol., 97, 2961-2970. https://doi.org/10.1007/s00253-012-4184-z
- Wargacki, AJ, Leonard, E, Win, MN, Regitsky, DD, Santos, CNS, Kim, PB, Cooper, SR, Raisner, RM, Herman, A, Sivitz, AB, et al. 2012. An Engineered Microbial Plat form for Direct Biofuel Production from Brown Macroalgae. Science, 335, 308-313. https://doi.org/10.1126/science.1214547
- Adams, J, Gallagher, J, Donnison, I. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol., 21, 569-574. https://doi.org/10.1007/s10811-008-9384-7
- Horn, SJ, Aasen, IM, Ostgaard, K. 2000. Ethanol production from seaweed extract. J. Ind. Microbiol. Biot., 25, 249-254. https://doi.org/10.1038/sj.jim.7000065
- Lee, S-M, Lee, J-H. 2012. Ethanol fermentation for main sugar components of brown-algae using various yeasts. J. Ind. Eng. Chem., 18, 16-18. https://doi.org/10.1016/j.jiec.2011.11.097
- Takeda, H, Yoneyama, F, Kawai, S, Hashimoto, W, Murata, K. 2011. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ. Sci., 4, 2575-2581. https://doi.org/10.1039/c1ee01236c
- Hashimoto, W, Yamasaki, M, Itoh, T, Momma, K, Mikami, B, Murata, K. 2004. Super-channel in bacteria: Structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. J. Biosci. Bioeng., 98, 399-413. https://doi.org/10.1016/S1389-1723(05)00304-X
- Enquist-Newman, M, Faust, AME, Bravo, DD, Santos, CNS, Raisner, RM, Hanel, A, Sarvabhowman, P, Le, C, Regitsky, DD, Cooper, SR, et al. 2014. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 505, 239-243. https://doi.org/10.1038/nature12771
- Quain, DE, Boulton, CA. 1987. Growth and Metabolism of Mannitol by Strains of Saccharomyces cerevisiae. J. Gen. Microbio., 133, 1675-1684.
- Berrios-Rivera, SJ, Bennett, G. N., San, K. 2002. Metabolic Engineering of Escherichia coli: Increase of NADH Availability by Overexpressing an NAD+-Dependent Formate Dehydrogenase. Metab. Eng., 4, 217-229. https://doi.org/10.1006/mben.2002.0227
Cited by
- Synthetic redesign of Escherichia coli for cadaverine production from galactose vol.10, pp.1, 2017, https://doi.org/10.1186/s13068-017-0707-2