DOI QR코드

DOI QR Code

Nerve Agents and Their Detection

  • Kim, Young Jun (Future Fusion Technology Lab., Electronics and Telecommunications research Institute (ETRI)) ;
  • Huh, Jae Doo (Future Fusion Technology Lab., Electronics and Telecommunications research Institute (ETRI))
  • 투고 : 2014.05.14
  • 심사 : 2014.06.05
  • 발행 : 2014.07.31

초록

Nerve agents are major chemical warfare agents with the "G series" and "V series" being the most widely known because of their lethal effect. Although not conspicuously used in major wars, the potential detrimental impact on modern society had been revealed from the sarin terror attack on Tokyo subway, which affected thousands of people. In this mini-review, major nerve agents of the "G series" and "V series" have been described along with various types of their detection methods. The physical properties and hydrolysis mechanisms of the major nerve agents are discussed since these are important factors to be considered in choosing detection methods, and specifying the procedures for sample preparations in order to enhance detection precision. Various types of extraction methods, including liquid-phase, solid-phase, gas-phase and solid-phase microextraction (SPME), are described. Recent development in the use of gas sensors for detecting nerve agents is also summarized.

키워드

참고문헌

  1. Osius TG. "The historic art of poisoning", Med Bull (Ann Arbor), Vol. 23, pp. 111-116, 1957.
  2. A. Mayor, Greek Fire, Poison Arrows, and Scorpion Bombs: Biological and Chemical Warfare in the Ancient World Woodstock, NY: Overlook Press; 2003.
  3. Smart JK. History of Chemical and Biological Warfare Fact Sheets. Aberdeen Proving Ground, Md: US Army Chemical and Biological Defense Command; 1996. Special Study 50.
  4. A. Mayor, Greek Fire, Poison Arrows, and Scorpion Bombs: Biological and Chemical Warfare in the Ancient World.Woodstock, NY: Overlook Press; 2003.
  5. Haber LF. The Poisonous Cloud: Chemical Warfare in the First World War. Oxford, England: Clarendon Press; pp. 15-40, 1986.
  6. M. J. Small, "Compounds formed from the chemical decontamination of HD, GB, and VX and their environmental fate", Technical report 8304, US Army medical bioengineering research and development laboratoty, Fort Detrick, Frederick, MD; AD A149515, 1984.
  7. R. Trapp, "The detoxification and natural degradation of chemical warfare agents", Stockholm, Sweden: International Peace Institute (SIPRI), 1985.
  8. D. N. Clark, "Review of reaction of chemical agents in water", Battelle, Columbus, OH. AD-A213 287. Defense Technical Information Center, Ft. Belvoir, VA, 1989.
  9. M. L. Sanches, C. R. Russell, and C. L. Randolf, "Chemical weapons convention (CWC): signature analysis", DNATR-92-73, Defense Nuclear Agency, Alexandria, VA, 1993.
  10. A. F. Kingery and H. E. Allen, "The environmental fate of organophosphorus nerve agents: A review", Toxicol Environ. Chem., Vol. 47, pp. 155-184, 1994.
  11. M. G. MacMaughton and J. H. Brewer, "Environmental chemistry and fate of chemical warfare agents", Final Report, SwRI Project 015864, Southwest Research Institute, San Antonio, TX, 1994.
  12. N. B. Munro, S. S. Talmage, G. D. Griffin, L. C. Waters, A. P. King, and V. Hauschil, "The sources, fate, and toxicity of chemical warfare agent degradation products, Environ. Health Perspect., Vol. 107, pp. 933, 1999. https://doi.org/10.1289/ehp.99107933
  13. H. Morita, N. Yanagisawa, and T. Nakajima, "Sarin poisoning in Matsumoto, Japan", Lancet, Vol. 346, No. 8970, pp. 290-293, 1995. https://doi.org/10.1016/S0140-6736(95)92170-2
  14. Department of the Army. NATO Handbook on the Medical Aspects of NBC Defensive Operations. AMedP-6, Part 3. Washington, DC: DA; Field Manual 8-9, 1996.
  15. T. Okumura, N. Takasu, and S. Ishimatu, "Report on 640 victims of the Tokyo subway sarin attack", Ann. Emerg. Med., Vol. 28, No. 2, pp. 129-135, 1996. https://doi.org/10.1016/S0196-0644(96)70052-5
  16. Sidell FR. Nerve agents. In: Sidell FR, Takafuji TE, Franz D. R., eds. Textbook of Military Medicine: Medical Aspects of Chemical and Biological Warfare. Falls Church, VA: Officeof the Surgeon General, U.S. Army; pp. 129-179, 1997.
  17. Ellison D. H. Handbook of Chemical and Biological Warfare Agents. Boca Raton, FL: CRC Press; pp. 220-239, 2000.
  18. J. Epstein, J. J. Callahan, and V. E. Bauer, "The kinetics and mechanisms of hydrolysis of phosphonothiolates in dilute aqueous solution", Phosphorus, Vol. 4, pp. 157-163, 1974.
  19. H. S. N. Lee, M. T. Sng, C. Basheer, and H. K. Lee, "Determination of basic degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry", J. Chromatogr. A, Vol. 1196-1197, No. 1-2, pp. 125-132, 2008. https://doi.org/10.1016/j.chroma.2008.04.027
  20. M. L. Kuitunen, in: M. Mesilaakso (Ed.), Chemical Weapons Convention Chemical Analysis: Sample Collection, Preparation and Analytical Methods, Wiley, Chichester, UK, 2004, p. 163.
  21. J. Hendrikse, in: M. Mesilaakso (Ed.), Chemical Weapons Convention Chemical Analysis: Sample Collection, Preparation and Analytical Methods, Wiley, Chichester, UK, 2004, p. 89.
  22. Organization for the Prohibition of Chemical Weapons (OPCW), 1997 .
  23. I. G. Zenkevich, Experimentally Measured Retention Indices, 2005.
  24. E. J. Staples, Creating a Compound Library for Chemical Warfare Agents for the Znose, 2006.
  25. Y. C. Yang, J. A. Baker, and J. R. Ward, "Decontamination of chemical warfare agetns", Chem. Rev. Vol. 92, pp. 1729-1743, 1992. https://doi.org/10.1021/cr00016a003
  26. P. Edwadrs, R. L. Maynard, in: T. C. Marrs, R. L. Maynard, F. R. Sidel (Eds.), Chemical Warfare Agents Toxicology and Treatment, Wiley and Sons, Chichester, England, p. 684, 2007.
  27. F. J. Vocci, T. A. Yevich, and C. L. Punte, "Inhalation toxicity studies with aerosols of sesqui-mustard", Toxicol. Appl. Pharmacol. Vol. 5, pp. 677-684, 1963. https://doi.org/10.1016/0041-008X(63)90061-9
  28. C. L. Arthur and J. Pawliszyn, "Solid phase microextraction with thermal desorption using fused silica optical fibers", Anal. Chem. Vol. 62, p. 2145-2148, 1990. https://doi.org/10.1021/ac00218a019
  29. J. Pawliszyn, Solid Phase Microextraction, Theory and Practice, Wiley-VCH, 1997.
  30. L. Pillonel, J. O. Bossett, and R. Tabacchi, "Rapid preconcentration and enrichment techniques for the analysis of food volatile. A review", Lebensm. Wiss. U. Technol. Vol. 35, pp. 1-14, 2002. https://doi.org/10.1006/fstl.2001.0804
  31. W. Wardencki, M. Michulec, and J. A. Curylo, "A review of theoretical and practical aspects of solid-phase microextraction in food analysis", Int. J. Food Sci. Technol., Vol. 39, pp. 703, 2004. https://doi.org/10.1111/j.1365-2621.2004.00839.x
  32. F. Pragst, "Application of solid-phase microextraction in analytical toxicology", Anal. Bioanal. Chem., Vol. 388, pp. 1393-1414, 2007. https://doi.org/10.1007/s00216-007-1289-9
  33. G. Ouyang and J. Pawliszyn, "SPME in environmental analysis", Anal. Bioanal. Chem., Vol. 386, p. 1059-1073, 2006. https://doi.org/10.1007/s00216-006-0460-z
  34. J. S. Aulakh, A. K. Malik, V. Kaur, and P. Schmitt-Kopplin, "A review on solid phase micro extraction-high performance liquid chromatography (SPME-HPLC) analysis of pesticides", Anal. Chem., Vol. 35, pp. 71-85, 2005.
  35. C. Bicchi, C. Cordero, E. Liberto, B. Sgorbini, and P. Rubiolo, "Headspace sampling of the volatile fraction of vegetable matrices", J. Chromatogr. A, Vol. 1184, pp. 220-233, 2008. https://doi.org/10.1016/j.chroma.2007.06.019
  36. A. M. Kanamori-Kataoka and Y. Seto, "Laboratory identification of the nerve gas hydrolysis products alkyl methylphosphonic acids and methylphosphonic aicd by gas chromatography-mass spectrometry after tert-butyldimethylsilylation", J. Health Sci., Vol. 54, pp. 513-523, 2008. https://doi.org/10.1248/jhs.54.513
  37. A. F. Kingery and H.E. Allen, "The environmental fate of organophosphorus agents: a review", Toxicol Environ. Chem., Vol. 47, pp. 155, 1994.
  38. R. L. Gustafson and A. E. Martell, "A kinetic study of the copper(II) chelate-catalyzed hydrolysis of isopropyl methylphosphonofluoridate (Sarin)", J. Am. Chem. Soc., Vol. 84, pp. 2309-2316, 1962. https://doi.org/10.1021/ja00871a007
  39. H. A. Lakso and W. F. Ng, "Determination of chemical warfare agents in natural water samples by solid phase microextraction", Anal. Chem., Vol. 69, pp. 1866-1872, 1997. https://doi.org/10.1021/ac960997h
  40. J. Pawliszyn, Applications of Solid Phase Microextraction, Royal Society of Analytical Chemistry, Cambridge, 1999.
  41. T. P. Gbatu, K. L. Sutton and J. A. Caruso R. "Development of new SPME fibers by sol-gel technology for SPMEHPLC determination of organometals", Anal. Chim. Acta, Vol. 402, pp. 67-79, 1999. https://doi.org/10.1016/S0003-2670(99)00532-2
  42. H. Prosen and L. Zupancic-Kralj, "Solid-phase microextraction", Trends Anal. Chem., Vol. 18, pp. 272-282, 1999. https://doi.org/10.1016/S0165-9936(98)00109-5
  43. M. M. Liu, Z. R. Zeng, C. L. Wang, Y. J. Tan, and H. Liu, "Solid-phase microextraction of phosphate and methylphosphonate using novel fibers coated with a sol-gel-derived silicone-divinylbenzene copolymer", Chromatographia, Vol. 58, pp. 597, 2003.
  44. G. L. Hook, G. Kimm, G. Betsinger, P. B. Savage, A. Swift, T. Logan, and P. A. Smith, "Solid phase microextraction sampling and gas chromatographic system for field applications", J. Sep. Sci., Vol. 26, pp. 1091-1096, 2003. https://doi.org/10.1002/jssc.200301561
  45. J. H. Wahl and H. A. Colburn, "Extraction of chemical impurities for forensic investigations: a case study for indoor release of a sarin surrogate", Build. Environ. Vol. 45, pp. 1339-1345, 2010. https://doi.org/10.1016/j.buildenv.2009.10.020
  46. C. Montauban, A. Be'gos, and B. Bellier, "Extraction of nerve agent VX from soil", Anal. Chem.,Vol. 76, p. 2791, 2004. https://doi.org/10.1021/ac035441q
  47. P. A. Smith, C. R. J. Lepage, D. Koch, H. D. M. Wyatt, G. L. Hook, G. Betsinger, R. P. Erickson, and B. A. Eckenrode, "Detection of gas-phase chemical warfare agents using field-portable gas chromatography-mass spectrometry system: instrument and sampling strategy considerations", Trends Anal. Chem., Vol. 23, pp. 296-306, 2004. https://doi.org/10.1016/S0165-9936(04)00405-4
  48. P. A. Smith, C. J. Lepage, M. Lukacs, N. Martin, A. Shufutinsky, and P. B. Savage, "Field-portable gas chromatography with transmission quadrupole and cylindrical ion trap mass spectrometric detection: chromatographic retention index data and ion/molecule interactions for chemical warfare agent identification", Int. J. Mass Spectrom., Vol. 295, p. 113, 2010. https://doi.org/10.1016/j.ijms.2010.03.001
  49. P. A. Smith, M. T. Sng, B. A. Eckenrode, S. Y. Leow, D. Koch, R. P. Erickson, C. R. J. Lepage, and G. L. Hook, "Towards smaller and faster gas chromatography-mass spectrometry systems for field chemical detection", J. Chromatogr. A, Vol. 1067, pp. 285-294, 2005. https://doi.org/10.1016/j.chroma.2004.11.008
  50. Y. J. Kim, H. Y. Yu, I. B. Back, and C. A. Choi, "Use of gas-sensor array technology in lung cancer diagnosis", J. Senor Sci. & Tech., Vol. 22, No. 4, pp. 249-255, 2013. https://doi.org/10.5369/JSST.2013.22.4.249
  51. Y. Wang, Z. Yang, Z. Hou, D. Xu, L. Wei, Eric S. W. Kong, and Y. Zhang, "Flexible gas sensors with assembled carbon nanotube thin films for DMMP vapor detection", Sens. Actuator B-Chem., Vol. 150, pp. 708-714, 2010. https://doi.org/10.1016/j.snb.2010.08.011
  52. Y. Y. Wang, Z. H. Zhou, Z. Yang, X. H. Chen, D. Xu, and Y. F. Zhang, "Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection", Nanotechnology, Vol. 20, pp. 345502-1-345502-8, 2009. https://doi.org/10.1088/0957-4484/20/34/345502
  53. J. S. Lee, D. H. Shin, J. Jun, and. Jang, "Multidimentional polypyrroe/iron oxyhydroxide hybrid nanoparticles for chemical nerve gas agent sensing application", ACS Nano, Vol. 7, No. 11, pp. 10139-10147, 2013. https://doi.org/10.1021/nn404353w
  54. Y. T. Lai, J. C. Kuo, and Y. J. Yang, "Polymer-dispersed liquid crystal doped with carbon nanotubes for dimethyl methylphosphonate vapor-sensing application", Appl. Phys. Lett., Vol. 102, pp. 191912-191913, 2013. https://doi.org/10.1063/1.4804297
  55. D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D., Filpo, and G. Chidichimo, "Self-adjusting smart windows based on polymer-dispersed liquid crystals", Sol. Energy Mater. Sol. Cells, Vol. 93, No. 11, pp. 2008-2012, 2009. https://doi.org/10.1016/j.solmat.2009.08.002
  56. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, "Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymer substrates", Appl. Phys. Lett., Vol. 80, No. 6, pp. 1088-1090, 2002. https://doi.org/10.1063/1.1448659
  57. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, "Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets", Appl. Phys. Lett., Vol. 89, No. 1, p. 011111, 2006. https://doi.org/10.1063/1.2219988
  58. Y. J. Liu and X. W. Sun, "Electrically switchable computergenerated hologram recorded in polymer-dispersed liquid crystals", Appl. Phys. Lett., Vol. 90, No. 19, p. 191118, 2007. https://doi.org/10.1063/1.2736270
  59. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, "Polarizationindependent phase modulation using a polymer-dispersed liquid crystal", Appl. Phys. Lett., Vol. 86, No. 14, p. 141110, 2005. https://doi.org/10.1063/1.1899749
  60. E. Scherschener, C. D. Perciante, E. A. Dalchiele, E. M. Frins, M. Korn, and J. A. Ferrari, "Polymer-dispersed liquid-crystal voltage sensor", Appl. Optics, Vol. 45, No. 15, p. 3482, 2006. https://doi.org/10.1364/AO.45.003482
  61. R. Basu and G. S. Iannacchione, "Nematic anchoring on carbon nanotubes", Appl. Phys. Lett., Vol. 95, No. 17, p. 173113, 2009. https://doi.org/10.1063/1.3256013