DOI QR코드

DOI QR Code

Intergenerational economic mobility in Korea using a quantile regression analysis

한국의 세대 간 경제적 이동성 - 분위수회귀분석을 중심으로 -

  • Richey, Jeremiah (School of Economics and Trade, Kyungpook National University) ;
  • Jeong, Kiho (School of Economics and Trade, Kyungpook National University)
  • ;
  • 정기호 (경북대학교 경제통상학부)
  • Received : 2014.04.24
  • Accepted : 2014.06.09
  • Published : 2014.07.31

Abstract

This study uses a quantile regression analysis to investigate intergenerational economic mobility in Korea. The analysis is based on data from the 1st through 11th waves of the Korean Labor and Income Panel Study (KLIPS) conducted from 1998-2008. The household nature of the data allows us to link parents' incomes to children's incomes at different points in time. Using a quantile regression analysis instead of mean one reveals that the effect of fathers' earnings are different across the conditional distribution of sons' earnings, particularly being larger on the upper quantile than on the lower quantile. After controlling effect of sons' college education by including a dummy variable for the degree, however, the pattern among quantile effects for fathers' earnings is no longer clear. Instead a new pattern emerges that education has a much larger effect on the upper quantiles than on the lower ones. Using nonparametric estimates of conditional density curves based on the quantile regression results, we derive some interesting features in graphical forms, which are not obvious in numerical analysis.

본 연구는 분위수회귀분석을 이용하여 한국의 세대 간 경제적 이동성을 분석한다. 분석에는 1998년부터 2008년까지의 한국노동패널조사 (KLIPS) 자료가 이용되었다. 분석결과, (1) 부모 소득영향력은 자녀소득의 조건부분포의 하위 분위수에서는 상대적으로 작고 상위 분위수로 갈수록 더 커지는 것으로 나타났다. 이것은 자녀소득 분포의 상위분위수로 갈수록 세대 간 경제적 이동성은 떨어지며 가구별 경제적 신분이 세대에 걸쳐 고착될 가능성이 높아지는 것을 의미한다. (2) 한편 교육효과를 제어하면 이러한 부모 소득 영향력은 감소하였다. (3) 대학교육 효과는 소득분포의 상위 분위수로 갈수록 더 높아져서 자녀의 대학교육이 세대 간에 소득이 이전되는 중요한 통로인 것으로 나타났다. (4) 마지막으로 분위수회귀분석결과로부터 자녀소득의 조건부분포를 비모수적으로 추정하고 추정된 곡선 그림을 이용하여 추가적인 시각적 특징들을 도출하였다.

Keywords

References

  1. Atkinson, A., Maynard, A. and Trinder, C. (1983). Parents and children: Incomes in two generations, Heinemann Educational Books, London.
  2. Bjorklund, A. and Jantti, M. (1997). Intergenerational income mobility in Sweden compared to the United State. American Economic Review, 87, 1009-1018.
  3. Bratberg, E., Nilson, O. and Vaage, K. (2005). Intergenerational mobility: Trends across the earnings distribution, Working paper, Institute for the Study of Labor, Bonn.
  4. Cervini-Pla, M. (2013). Exploring the sources of earnings transmission in Spain. Review of Public Economics, 204, 45-66.
  5. Cho, W. (2004). Father's education and inequality in Korean labor market. The Journal of Korean Labor Economic Association, 27, 67-89.
  6. Couch, K. and Dunn, T. (1997). Intergenerational correlations in labor market status: A comparison of the United States and Germany. Journal of Human Resources, 32, 210-232. https://doi.org/10.2307/146246
  7. Couch, K. and Lillard, L. (1994). Sample selection rules and the intergenerational correlation of earning: A comment on Solon and Zimmerman. Unpublished.
  8. Dearden, J., Stephen, M. and Reed, H. (1997). Intergenerational mobility in Britain. Economic Journal, 107, 47-66. https://doi.org/10.1111/1468-0297.00141
  9. Dunn, C. (2003). Intergenerational earnings mobility in Brazil and its determinants, Working paper, University of Michigan, Ann Harbor.
  10. Eide, E. and Showalter, M. (1999). Factors affecting the transmission of earnings across generations: A quantile regression approach. The Journal of Human Resources, 34, 253-267. https://doi.org/10.2307/146345
  11. Fertig, A. (2003). Trends in intergenerational earnings mobility in the United States. Journal of Income Distribution, 12, 108-130.
  12. Friedman, M. (1957). A theory of consumption function, Princeton University Press, Princeton.
  13. Gaglianone, W. and Lima, L. (2012). Constructing density forecasts from quantile regressions. Journal of Money, Credit and Banking, 44, 1589-1607.
  14. Hwang, C. and Shim, J. (2012). Mixed effects least squares support vector machine for survival data analysis. Journal of the Korean Data & Information Science Society, 23, 739-748. https://doi.org/10.7465/jkdi.2012.23.4.739
  15. Hyun, E. (2013). The connection between intergenerational income mobility and intergenerational income inequality structure in Korea, Master Thesis, Seoul National University, Seoul.
  16. Kim, B., Seok, J. and Hyun, E. (2012). Intergenerational income elasticities in Korea and their trend. Korean Labor Economic Review, 35, 25-41.
  17. Kim, H. (2009). An analysis of intergenerational economic mobility in Korea, Working paper, Korea Development Institute, Seoul.
  18. Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
  19. Koenker, R. and Hallock, K. (2003). Quantile regression. Journal of Economic Perspectives, 15, 143-156.
  20. Lillard, L. and Kilburn, M. (1995). Intergenerational earnings links: Sons and daughters, Working paper, RAND, Santa Monica.
  21. Mazumder, B. (2005). Fortunate sons: New estimates of intergenerational mobility in the United States using social security earnings data. The Review of Economcs and Statistics, 87, 235-255. https://doi.org/10.1162/0034653053970249
  22. Nam, K. (2008). The effect of parents'education level on children's education level and occupational status. The Journal of Economics and Finance of Education, 17, 61-92.
  23. Navarro, A. (2007). Exploring income mobility patterns in Argentina using quantile regression, Working paper, Universidad Austral, Valdivia.
  24. Phang, H. and Kim, G. (2001). Change and inheritance: The structure and process of social status achievement in Korea. Korean Journal of Sociology, 35, 1-30.
  25. Phang, H. and Kim, G. (2003). Trends and differentials in educational stratification in Korea. Korean Journal of Sociology, 37, 31-65.
  26. Peracchi, F. (2002). On estimating conditional quantiles and distribution functions. Computational Statistics and Data Analysis, 38, 433-447. https://doi.org/10.1016/S0167-9473(01)00070-6
  27. Shim, J. and Lee, J. (2010). Restricted support vector quantile regression without crossing. Journal of the Korean Data & Information Science Society, 21, 1319-1325.
  28. Shim, J., Kim, Y., Lee, J. and Hwang, C. (2012). Estimating value at risk with semiparametric support vector quantile regression. Computational Statistics, 27, 685-700. https://doi.org/10.1007/s00180-011-0283-z
  29. Shim, J. and Seok, K. (2012). Semiparametric kernel logistic regression with longitudinal data. Journal of the Korean Data & Information Science Society, 23, 385-392. https://doi.org/10.7465/jkdi.2012.23.2.385
  30. Shim, J. and Hwang, C. (2013). Expected shortfall estimation using kernel machines. Journal of the Korean Data & Information Science Society, 24, 625-636. https://doi.org/10.7465/jkdi.2013.24.3.625
  31. Silverman, B. (1986). Density estimation for statistics and data analysis, Chapman and Hall, London.
  32. Solon, G. (1992). Intergenerational income mobility in the United States. The American Economic Review, 82, 393-408.
  33. Sydsater, K., Strom, A. and Berck, P. (1999). Economists'mathematical manual, Springer, Berlin.
  34. Ueda, A. (2013). Intergenerational mobility of earnings in South Korea. Journal of Asian Economics, 27, 33-41. https://doi.org/10.1016/j.asieco.2013.05.002
  35. Yang, J. (2012). Estimating the intergenerational income mobility. Korean Labor Economic Review, 35, 79-115.

Cited by

  1. 다변량 분위수 회귀나무 모형에 대한 연구 vol.28, pp.3, 2014, https://doi.org/10.7465/jkdi.2017.28.3.533