DOI QR코드

DOI QR Code

콘크리트의 강도 및 내구성에 대한 고로슬래그미분말 분말도의 영향

Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete

  • 투고 : 2014.01.21
  • 심사 : 2014.06.12
  • 발행 : 2014.08.01

초록

본 연구는 콘크리트의 강도특성 및 내구성에 대한 고로슬래그미분말 분말도의 영향을 평가하기 위하여 수행되었다. 본 실험에 사용된 고로슬래그미분말의 분말도는 3종류(4,450, 6,000 및 $8,000cm^2/g$)를 선정하였으며, 보통포틀랜드시멘트에 대하여 50%를 대체하여 공시체를 제조하였다. 강도실험 결과에 따르면, 분말도가 $8,000cm^2/g$인 고로슬래그미분말을 사용한 콘크리트의 압축 및 쪼갬인장강도는 초기재령에서는 보통 포틀랜드시멘트 콘크리트에 비하여 다소 작았으나, 장기재령에서는 잠재수경성의 촉진으로 인하여 강도가 우수하게 나타났다. 내구성 분석결과에 의하면, 고분말도(6,000 및 $8,000cm^2/g$) 고로슬래그미분말 사용 콘크리트의 동결융해 저항성이 다소 작게 나타난 반면, 염소이온 침투저항성은 분말도 크기에 관계없이 고로슬래그미분말 적용 콘크리트가 우수하게 관찰되었다. 한편, 고로슬래그미분말을 사용한 모르타르의 황산염침식 저항성은 침식환경에 지배적인 영향을 받는 것으로 조사되었다.

This paper presents the results of experimental work on both strength characteristics and durability of concrete or mortar having 50% ground granulate blastfurnace slag(GBS) with different fineness levels (4,450, 6,000 and $8,000cm^2/g$). Compressive and split tensile strength test results indicated that the concrete with a higher fineness level of GBS exhibited a better strength development due to the acceleration of latent hydraulic property at the later curing stage compared with ordinary portland cement concrete. Meanwhile, it was found that a higher fineness level of GBS showed some negative effects on the resistance against freezing-thawing action. However, incorporation of GBS to concrete, irrespective of fineness levels, significantly enhanced the chloride ions penetration resistance. The resistance against sulfate attack of mortar with GBS was greatly dependent on the attacking sources from sulfate environments.

키워드

참고문헌

  1. Al-Amoudi, O. S. B., Maslehuddin, M. and Saadi, M. M. (1995). "Effect of magnesium sulfate and sodium sulfate on the durability performance of plain and blended cements."ACI Mater. J., Vol. 92, No. 1, pp. 15-24.
  2. Allahverdi, A. and Abadi, M. M. B. R. (2014). "Resistance of chemically activated high phosphorous slag content cement against frost-salt attack."Cold Reg. Sci.. Tech., Vol. 98, pp. 18-25. https://doi.org/10.1016/j.coldregions.2013.11.001
  3. Aye, T. and Oguchi, C. T. (2011). "Resistance of plain and blended cement mortars exposed to severe sulfate attacks."Constr. Build. Mater., Vol. 25, No. 6, pp. 2988-2996. https://doi.org/10.1016/j.conbuildmat.2010.11.106
  4. Babu, K. and Kumar, V. S. R. (2000). "Efficiency of GGBS in concrete." Cem. Concr. Res., Vol. 30, No. 7, pp. 1031-1036. https://doi.org/10.1016/S0008-8846(00)00271-4
  5. Beushausen, H., Alexander, M. and Ballim, Y. (2012). "Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios."Constr. Build. Mater., Vol. 29, pp. 533-540. https://doi.org/10.1016/j.conbuildmat.2011.06.018
  6. Cohen, M. and Bentur, A. (1988). "Durability of portland cementsilica fume pastes in magnesium sulfate and sodium sulfate solution."ACI Mater. J., Vol. 85, No. 3, pp. 148-157.
  7. Deja, J. (2003). "Freezing and de-icing salt resistance of blast furnace slag concretes."Cem. Concr. Compos., Vol. 25, No. 3, pp. 357-361. https://doi.org/10.1016/S0958-9465(02)00052-5
  8. Geng, H. and Li, Q. (2014). "Development of microstructure and chemical composition of hydration products of slag activated by ordinary Portland cement."Mater. Charact., Vol. 87, pp. 149-158. https://doi.org/10.1016/j.matchar.2013.11.012
  9. Hadj-sadok, A., Kenai, S., Courard, L. and Darimont, A. (2011). "Microstructure and durability of mortars modified with medium active blast furnace slag."Constr. Build. Mater., Vol. 25, No. 2, pp. 1018-1025. https://doi.org/10.1016/j.conbuildmat.2010.06.077
  10. Higgins, D. D. (1995). "Ground granulated blast furnace slag." World Cem., Vol. 6, pp. 51-52.
  11. Hooton, R. D. (2000). "Canadian use of ground granulated blastfurnace slag as a supplementary cementing material for enhanced performance of concrete."Can. J. of Civ. Eng., Vol. 27, No. 4, pp. 754-760. https://doi.org/10.1139/l00-014
  12. Kim, G. W., Kim, B. J., Yang, K. H. and Song, J. K. (2012). "Strength development of blended sodium alkali-activated ground granulated blast-furnace slag (GGBS) mortar."J. of Kor. Concr. Instit., Vol. 24, No. 2, pp. 137-145 (in Korean). https://doi.org/10.4334/JKCI.2012.24.2.137
  13. Lawrence, C. D. (1992). "The influence of binder type on sulfate resistance."Cem. Concr. Res., Vol. 22, No. 6, pp. 1047-1058. https://doi.org/10.1016/0008-8846(92)90035-T
  14. Lee, S. H., Kim, W. K. and Kang, S. H. (2012). "Hydration mechanism of ground granulated blast furnace slag."J. of Kor. Concr. Instit., Vol. 24, No. 6, pp. 31-34 (in Korean).
  15. Lee, S. S., Won, C., Kim, D. S. and Park, S. J. (2000). "A study on the engineering properties of concrete using blast-furnace slag powder."J. of Kor. Concr. Instit., Vol. 12, No. 4, pp. 49-58 (in Korean).
  16. Lubeck, A., Gastaldini, A. L. G., Barin, D. S. and Siqueira, H. C. (2012). "Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag."Cem. Concr. Compos., Vol. 34, No. 3, pp. 392-399. https://doi.org/10.1016/j.cemconcomp.2011.11.017
  17. Moon, H. Y. and Lee, S. T. (2003). "Influence of silicate ratio and additives on the sulphate resistance of portland cement."Adv. Cem. Res., Vol. 15, No. 3, pp. 91-101. https://doi.org/10.1680/adcr.2003.15.3.91
  18. Neto, A. A. M., Cincotto, M. A. and Repette, W. (2010). "Mechanical properties, drying and autogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum."Cem. Concr. Compos., Vol. 32, No. 4, pp. 312-318. https://doi.org/10.1016/j.cemconcomp.2010.01.004
  19. Oner, A. and Akyuz, S. (2007). "An experimental study on optimum usage of GGBS for the compressive strength of concrete."Cem. Concr. Compos., Vol. 29, No. 6, pp. 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
  20. Oner, M., Erdogdu, K. and Gunlu, A. (2003). "Effect of components fineness on strength of blast furnace slag cement."Cem. Concr. Res., Vol. 33, No. 4, pp. 463-469. https://doi.org/10.1016/S0008-8846(02)00713-5
  21. Ortega, J. M., Sanchez, I. and Climent, M. A. (2012). "Durability related transport properties of OPC and slag cement mortars hardened under different environmental conditions."Constr. Build. Mater., Vol. 27, No. 1, pp. 176-183. https://doi.org/10.1016/j.conbuildmat.2011.07.064
  22. Osborne, G. J. (1999). "Durability of Portland blast-furnace slag cement concrete."Cem. Concr. Compos., Vol. 21, No. 1, pp. 11-21. https://doi.org/10.1016/S0958-9465(98)00032-8
  23. Ramlochan, T., Thomas, M. D. A. and Hooton, R. D. (2004). "The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature: Part II: Microstructural and Microchemical Investigations."Cem. Concr. Res., Vol. 34, No. 8, pp. 1341-1356. https://doi.org/10.1016/j.cemconres.2003.12.026
  24. Rasheeduzzafar, Dakhil, F. H., Al-Gahtani, A. S., Al-Saadoun, S. S. and Mather, A. B. (1990). "Effect of magnesium sulfate and sodium sulfate on the durability performance of plain and blended cements."ACI Mater. J., Vol. 80, No. 2, pp. 114-122.
  25. Sabir, B. B. (1997). "Mechanical properties and frost resistance of silica fume concrete."Cem. Concr. Compos., Vol. 19, No. 4, pp. 285-294. https://doi.org/10.1016/S0958-9465(97)00020-6
  26. Sisomphon, K., Copuroglu, O. and Fraaij, A. L. A. (2010). "Development of blast furnace slag mixtures against frost salt attack." Cem. and Concr. Compos., Vol. 32, No. 8, pp. 630-638. https://doi.org/10.1016/j.cemconcomp.2010.06.001
  27. Teng, S., Yang, T., Lim, D. and Divsholi, B. S. (2013). "Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag."Constr. Build. Mater., Vol. 40, pp. 875-881. https://doi.org/10.1016/j.conbuildmat.2012.11.052
  28. Wang, Z., Zeng, Q., Wang, L., Yao, Y. and Li, K. (2014). "Corrosion of rebar in concrete under cyclic freeze-thaw and Chloride salt action."Constr. Build. Mater., Vol. 53, pp. 40-47. https://doi.org/10.1016/j.conbuildmat.2013.11.063

피인용 문헌

  1. Heat of hydration and mechanical properties of mass concrete with high-volume GGBFS replacements 2017, https://doi.org/10.1007/s10973-017-6914-z
  2. Evaluation of cement mortars blended with copper alloy slag vol.25, pp.1, 2015, https://doi.org/10.6111/JKCGCT.2015.25.1.039
  3. Changes in Heavy Metal Content of Blast Furnace Slag Cement According to Blast Furnace Slag Content vol.35, pp.4, 2018, https://doi.org/10.9786/kswm.2018.35.4.356
  4. Evaluating Strength Development and Durability of High-Strength Concrete with 60% of Ground-Granulated Blast Furnace Slag vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.307