DOI QR코드

DOI QR Code

Synthesis and Characterization of CoAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing

역-마이셀 공정에 의한 CoAl2O4 무기안료 나노 분말의 합성 및 특성

  • Son, Jeong-Hun (School of Nano & Advanced Materials Eng., Changwon National Univ.) ;
  • Bae, Dong-Sik (School of Nano & Advanced Materials Eng., Changwon National Univ.)
  • 손정훈 (국립창원대학교 신소재공학과) ;
  • 배동식 (국립창원대학교 신소재공학과)
  • Received : 2014.05.02
  • Accepted : 2014.06.25
  • Published : 2014.07.27

Abstract

Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. $CoAl_2O_4$ nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of $Co(NO_3)_2$ and $Al(NO_3)_3$). The $CoAl_2O_4$ was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and $1,200^{\circ}C$ for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized $CoAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized $CoAl_2O_4$ powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.

Keywords

References

  1. V. D. l. Luz, M. Prades, H. Beltran and E. Cordoncillo, J. Eur. Ceram Soc., 33, 3359 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.05.021
  2. K. I. Lilova, A. Navrotsky, B. C. Melot and R. Seshadri, J. Solution Chem., 183, 1266 (2010).
  3. D. Rangappa, T. Naka, A. Kondo, M. Ishii, T. Kobayashi and T. Adschiri, J. Am. Chem. Soc., 36, 129 (2007).
  4. I. S. Ahmed, H. A. Dessouki and A. A. Ali, Spectrochim Acta, 71, 616 (2008). https://doi.org/10.1016/j.saa.2007.12.050
  5. S. R. Prim, A. Garcia, R. Galindo, S. Cerro, M. Llusar, M. V. Folgueras and G. Monros, Ceram. Int., 39, 6981 (2013). https://doi.org/10.1016/j.ceramint.2013.02.035
  6. S. Mestre, M. D. Palacios and P. Agut, J. Eur. Ceram. Soc., 32, 1995 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.044
  7. I. S. Ahmed, H. A. Dessouki and A. A. Ali, Polyhedron, 30, 584 (2011). https://doi.org/10.1016/j.poly.2010.11.034
  8. M. F. Zawrah, Mater. Sci. Eng., 382, 362 (2004). https://doi.org/10.1016/j.msea.2004.05.074
  9. M. Gaudon, L. C. Robertson, E. Lataste, M. Duttine, M. Menetrier and A. Demourgues, Ceram. Int., 40, 5201 (2014). https://doi.org/10.1016/j.ceramint.2013.10.081
  10. M. Gaudon, A. Apheceixborde, M. Menetrier, A. Le Nestour, and A. Demourgues, Inorg. Chem., 48, 19 (2009). https://doi.org/10.1021/ic801619v
  11. M. Dondi, C. Zanelli, M. Ardit, G. Cruciani, L. Mantovani, M. Tribaudino and G. B. Andreozzi, Ceram. Int., 39, 9533 (2013). https://doi.org/10.1016/j.ceramint.2013.05.072
  12. A. E. Giannakas, A. K. Ladavos, G. S. Armatas and P. J. Pomonis, Appl. Surf. Sci., 253, 6969 (2007). https://doi.org/10.1016/j.apsusc.2007.02.031
  13. A. Dandapat and G. De, ACS Appl. Mater. Interfaces, 4, 228 (2012). https://doi.org/10.1021/am201283c
  14. G. George, V. S. Vishnu and M. L. P. Reddy, Dyes Pigments, 88, 109 (2011). https://doi.org/10.1016/j.dyepig.2010.05.010
  15. P. L. nakova, M. Trojan, J. Luxova and J. Trojan, Dyes Pigments, 96, 264 (2013). https://doi.org/10.1016/j.dyepig.2012.07.022
  16. A. F. Osorio, E. P. Villanueva and J. C. Fernandez, Mater. Res. Bull, 47, 445 (2012). https://doi.org/10.1016/j.materresbull.2011.10.024
  17. B. Balusamy, Y. G. Kandhasamy, A. Senthamizhan, G. Chandrasekaran, M. S. Subramanian and K. Tirukalikundram S, J. Rare Earths, 30, 12 1298 (2012).
  18. M. Mozaffari, M. EghbaliArani and J. Amighian, J. Magn. Magn. Mater., 322, 3240 (2010). https://doi.org/10.1016/j.jmmm.2010.05.053
  19. J. Yoshida, M. Stark, J. Holzbock, N. Husing, S. Nakanishi, H. Iba, H. Abea and M. Naito, J. Power Sourc., 226, 122 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.081
  20. P. M. T. Cavalcante, M. Dondi, G. Guarini, M. Raimondo and G. Baldi, Dyes Pigments, 80, 226 (2009). https://doi.org/10.1016/j.dyepig.2008.07.004
  21. J. L. Wang, Y. Q. Li, Y. J. Byon, S. G. Mei and G. L. Zhang, Powder Technol., 235, 303 (2013). https://doi.org/10.1016/j.powtec.2012.10.044
  22. H. E. H. Sadek, R. M. Khattab, A. A. Gaber and M. F. Zawrah, Spectrochim. Acta Mol. Biomol. Spectros., 125, 353 (2014). https://doi.org/10.1016/j.saa.2014.01.115
  23. J. H. Kim, B. R. Son, D. H. Yoon, K. T. Hwang, H. G. Noh, W. S. Cho and U. S. Kim, Ceram. Int., 38, 5707 (2012). https://doi.org/10.1016/j.ceramint.2012.04.015
  24. R. KantSharma and R. Ghose, Ceram. Int., 40, 3209 (2014). https://doi.org/10.1016/j.ceramint.2013.09.121
  25. V. S. Vishnu and M. L. Reddy, Sol. Energ. Mater. Sol. Cells, 95, 2685 (2011). https://doi.org/10.1016/j.solmat.2011.05.042
  26. S. Jose and M. L. Reddy, Dyes Pigments, 98, 540 (2013). https://doi.org/10.1016/j.dyepig.2013.04.013
  27. Y. Chen, Y. Zhang and S. Feng, Dyes Pigments, 105, 167 (2014). https://doi.org/10.1016/j.dyepig.2014.01.017
  28. F. Yu, J. Yang, J. Ma, J. Du and Y. Zhou, J. Alloys Compd., 468, 443 (2009). https://doi.org/10.1016/j.jallcom.2008.01.018
  29. R. Ianos, R. Lazau and P. Barvinschi, Adv. Powder Tech., 22, 396 (2011). https://doi.org/10.1016/j.apt.2010.06.006
  30. A. F. Costa, P. M. Pimentel, F. M. Aquino, D. M. A. Melo, M. A. F. Melo and I. M. GSantos, Mater. Lett., 112, 58 (2013). https://doi.org/10.1016/j.matlet.2013.08.044
  31. H. S. Hafez and E. El-fadaly, Spectrochim. Acta Mol. Biomol. Spectros., 95, 8 (2012). https://doi.org/10.1016/j.saa.2012.04.072
  32. H. Fathi, J. P. Kelly, V. R. Vasquez, and O. A. Graeve, Langmuir, 28, 9267 (2012). https://doi.org/10.1021/la300586f
  33. H. Matsune, T. Tago, K. Shibata, K. Wakabayashi and M. Kishida, J. Nanopart. Res., 8, 1083 (2006). https://doi.org/10.1007/s11051-006-9070-0
  34. M. Han, C. R. Vestal, and Z. John Zhang, J. Phys. Chem. B, 108, 583 (2004). https://doi.org/10.1021/jp035966m
  35. Y. Vahidshad, H. Abdizadeh, M. Akbari Baseri and H. R. Baharvandi, J. Sol-Gel Sci. Technol., 53, 263 (2010). https://doi.org/10.1007/s10971-009-2086-z
  36. P. Setua, R. Pramanik, S. Sarkar, C. Ghatak, S. K. Das, and N. Sarkar, J. Phys. Chem. B, 114, 7557 (2010). https://doi.org/10.1021/jp1008048
  37. D. B. Zhang, H. M. Cheng and J. M. Ma, J. Mater. Sci. Lett., 20, 439 (2001). https://doi.org/10.1023/A:1010906615079

Cited by

  1. Synthesis and Characterization of NiAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing vol.25, pp.2, 2015, https://doi.org/10.3740/MRSK.2015.25.2.95