DOI QR코드

DOI QR Code

Pb(II) Removal from Aqueous Solutions Using Pinewood and Oakwood

소나무와 참나무를 이용한 Pb(II) 제거

  • Um, Byung-Hwan (Department of Chemical Engineering and Research Center of Chemical Technology, Hankyong National University) ;
  • Jo, Sung-Wook (Department of Bioresources and Rural System Engineering Hankyong National University) ;
  • Park, Seong-Jik (Department of Bioresources and Rural System Engineering Hankyong National University)
  • 엄병환 (한경대학교 화학공학과 화학기술연구소) ;
  • 조성욱 (한경대학교 지역자원시스템공학과) ;
  • 박성직 (한경대학교 지역자원시스템공학과)
  • Received : 2014.02.17
  • Accepted : 2014.04.28
  • Published : 2014.07.25

Abstract

Crushed pinewood and oakwood were studied as an adsorbent for Pb(II) removal from aqueous solution. Batch adsorption experiments were carried out to describe the effects of contact time, initial Pb(II) concentration, pH, competing cations, and adsorbent dosage on the Pb(II) adsorption process. Kinetic studies revealed that the Pb(II) adsorption process for pinewood and oakwood followed both pseudo first and pseudo second order model. The Fruendlich model best described equilibrium adsorption data with correlation coefficients ($R^2$) of 0.956 and 0.950 for pinewood and oakwood. The maximum adsorption capacity of Pb(II) onto pinewood and oakwood was found to be 16.853 and 27.989 mg/g, respectively. The Pb(II) adsorption onto both pinewood and oakwood was increased as pH increased in the pH range 3-9. The presence of cations such as $Na^+$, $Ca^{2+}$, and $Al^{3+}$ decreased Pb(II) adsorption. The Pb(II) removal was greater in seawater than deionized water, resulting from the presence of $CO{_3}^{2-}$ and $OH^-$ ions in seawater. This study showed that pinewood and oakwood have a potential application in the remediation of Pb(II) contaminated water.

파쇄한 소나무와 참나무를 수중에서 Pb(II) 제거를 위한 흡착제로서 적용성을 검토하였다. 접촉시간, 초기 Pb(II) 농도, pH, 경쟁이온, 그리고 흡착제 주입량이 Pb(II) 흡착에 미치는 영향을 파악하기 위하여 회분 흡착 실험을 수행하였다. 동역학적 실험 결과, 소나무와 참나무에 Pb(II) 흡착은 유사 1차 모델과 유사 2차 모델 모두 적합한 것으로 나타났다. 평형 흡착 실험 결과는 결정계수가 소나무의 경우 0.956, 참나무의 경우 0.950으로 Freundlich 모델이 적합한 것으로 나타났다. 소나무와 참나무의 Pb(II) 최대 흡착양은 각각 16.853과 27.989 mg/g으로 나타났다. pH가 3에서 9로 증가함에 따라서 소나무와 참나무에 Pb(II) 흡착은 증가하였다. $Na^+$, $Ca^{2+}$, 그리고 $Al^{3+}$와 같은 양이온의 존재는 Pb(II) 흡착을 감소시켰다. Pb(II) 흡착은 증류수 조건에서 보다 해수에서 흡착량이 컸으며, 이는 해수에 존재하는 $CO{_3}^{2-}$$OH^-$ 이온이 Pb(II)와 화합물을 형성하기 때문이다. 본 연구를 통해서 Pb(II)로 오염된 물 정화에 소나무와 참나무가 활용될 것으로 판단된다.

Keywords

References

  1. Abou-Shady, A., Peng, C., Bi, J., Xu, H., Almeria, O.J. 2012. Recovery of Pb(II) and removal of $NO_3$ - from aqueous solutions using integrated electrodialysis,electrolysis, and adsorption process, Desalination 286: 304-315. https://doi.org/10.1016/j.desal.2011.11.041
  2. Afridi, H.I., Kazi, T.G., Kazi, G.H., Jamali, M.K., Shar, G.Q. 2006. Essential trace and toxic element distribution in the scalp hair of Pakistanimyocardial infarction patients and controls, Biological Trace Element Research 113: 19-34. https://doi.org/10.1385/BTER:113:1:19
  3. Ahmad, A., Rafatullah, M., Sulaiman, O., Ibrahim, M.H., Chii,Y.Y., Siddique, B.M. 2009. Removal of Cu (II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood, Desalination 247(1): 636-646. https://doi.org/10.1016/j.desal.2009.01.007
  4. Al-Rashdi, B.A.M., Johnson, D.J., Hilal, N. 2013. Removal of heavy metal ions by nanofiltration, Desalination 315: 2-17. https://doi.org/10.1016/j.desal.2012.05.022
  5. Al-Zboon, K., Al-Harahsheh, M. S., Hani, F.B. 2011. Fly ash-based geopolymer for Pb removal from aqueous solution, Journal of Hazardous Materials 188(1): 414-421. https://doi.org/10.1016/j.jhazmat.2011.01.133
  6. Dwivedi, C.P., Sahu, J.N., Mohanty, C.R., Mohan, B.R., Meikap, B.C.2008. Column performance of granular activated carbon packed bed for Pb(II) removal, Journal of Hazardous Materials 156(1): 596-603. https://doi.org/10.1016/j.jhazmat.2007.12.097
  7. EPA. 2005. Lead and copper rule a quick reference guide for schools and child care facilities that are regulated under the safe drinking water act. Office of water. EPA.
  8. Forstner, U., Wittmann, G.T. 1979. Metal pollution in the aquatic environment. 2nd edition. Springer. New York.
  9. Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., Sengupta, B. 2011. Remediation technologies for heavy metal contaminated groundwater, Journal of Environmental Management 92: 2355-2388. https://doi.org/10.1016/j.jenvman.2011.06.009
  10. Hien Hoa, T.T., Liamleam, W., Annachhatre, A.P. 2007. Lead removal through biological sulfate reduction process, Bioresource Technology 98: 2538-2548. https://doi.org/10.1016/j.biortech.2006.09.060
  11. Huang, Y.H., Hsueh, C.L., Huang, C.P., Su, L.C., Chen, C.Y. 2007. Adsorption thermodynamic and kinetic studies of Pb(II) removal from water onto a versatile Al2O3-supported iron oxide, Separation and Purification Technology 55: 23-29. https://doi.org/10.1016/j.seppur.2006.10.023
  12. Ho, Y.S., McKay, G.1999. Pseudo-second order model for sorption processes. Process Biochemistry 34(5): 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  13. Jamshidi Gohari, R., Lau, W.J., Matsuura, T., Halakoo, E., Ismail, A.F. 2013. Adsorptive removal of Pb(II) from aqueous solution by novel PES/HMO ultrafiltration mixed matrix membrane. Separation and Purification Technology 120: 59-68. https://doi.org/10.1016/j.seppur.2013.09.024
  14. Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E., Alam, M.D.Z., Yahya, N. 2009. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. Journal of Environmental Sciences 21(4): 539-544. https://doi.org/10.1016/S1001-0742(08)62305-0
  15. Kang, K., Kim, Y.K., Park., S.J. 2013. Phosphate removal of aqueous solutions using industrial wastes. Journal of the Korean Society of Agricultural Engineers 55(1): 49-57 (in Korean). https://doi.org/10.5389/KSAE.2013.55.1.049
  16. Kazi, T.G., Jalbani, N., Kazi, N., Jamali, M.K., Arain, M.B., Afridi, H.I.,Pirzado, Z.2008. Evaluation of toxic metals in blood and urine samples of chronic renal failure patients, before and after dialyses, Renal Failure 30-: 737-745. https://doi.org/10.1080/08860220802212999
  17. Li, K., Wang, X. 2009. Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: equilibrium, kinetics and thermodynamics, Bioresource Technology 100-: 2810-2815. https://doi.org/10.1016/j.biortech.2008.12.032
  18. Malamis, S., Katsou, E., Takopoulos, K., Demetriou, P., Loizidou, M. 2012. Assessment of metal removal, biomass activity and RO concentrate treatment in an MBR-RO system, Journal of Hazardous Materials 209-210: 1-8. https://doi.org/10.1016/j.jhazmat.2011.10.085
  19. Mbareck, C., Nguyen, Q.T., Alaoui, O.T., Barillier, D. 2009. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water, Journal of Hazardous Materials 171: 93-101. https://doi.org/10.1016/j.jhazmat.2009.05.123
  20. Mohammadi, T., Razmi, A., Sadrzadeh, M. 2004. Effect of operating parameters on $Pb^{2+}$ separation from wastewater using electrodialysis, Desalination 167: 379-385. https://doi.org/10.1016/j.desal.2004.06.150
  21. Othman Ali,I., Hassan, A.M., Shaaban, S.M., Soliman, K.S. 2011. Synthesis and characterization of ZSM-5 zeolite from rice husk ash and their adsorption of $Pb^{2+}$ onto unmodified and surfactant-modified zeolite, Separation and Purification Technology 83: 38-44. https://doi.org/10.1016/j.seppur.2011.08.034
  22. Park, S.J., Kim, J.H., Lee, C.G., Park, J.A., Choi, N.C., Kim, S.B. 2010. Removal of fluoride using thermally treated activated alumina, Journal of Korean Society of Environmental Engineers 32(10): 986-993.
  23. Sahu, M.K., Mandal, S., Dash, S.S., Badhai, P., Patel, R.K. 2013. Removal of Pb(II) from aqueous solution by acid activated red mud, Journal of Environmental Chemical Engineering 1(4): 1315-1324. https://doi.org/10.1016/j.jece.2013.09.027
  24. Shukla, A., Zhang, Y.H., Dubey, P., Margrave, J.L., Shukla, S.S. 2002. The role of sawdust in the removal of unwanted materials from water, Journal of Hazardous Materials B95: 137-152.
  25. Stafiej, A., Pyrzynska, K. 2007. Adsorption of heavy metal ions with carbon nanotubes, Separation and Purification Technology 58: 49-52. https://doi.org/10.1016/j.seppur.2007.07.008
  26. Stumm, W., Morgan, J.J. 2012. Aquatic chemistry: chemical equilibria and rates in natural waters (Vol. 126). John Wiley and Sons.
  27. Summers, R.S., Knappe, D.R.U., Snoeyink, V.L. 2011. Adsorption of organic compounds by activated carbon. In: Water quality and treatment: A handbook on drinking water, 6th Edition. Edited by J. K. Edzwald. McGraw-Hill.
  28. Tipping, E. 2002. Cation Binding by Humic Substances, Centre of Ecology and Hydrology, Windsmere, Cambridge University Press, UK.
  29. Tiwari, D., Kim, H.U., Lee, S.M. 2007. Removal behavior of sericite for Cu(II) and Pb(II) from aqueous solutions: batch and column studies, Separation and Purification Technology 57: 11-16. https://doi.org/10.1016/j.seppur.2007.03.005
  30. Tunali, S., Akar, T., Ozcan, A.S., Kiran, I., Ozcan, A. 2006. Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola, Separation and Purification Technology 47: 105-112. https://doi.org/10.1016/j.seppur.2005.06.009
  31. Viswanathan, N., Sundaram, C.S., Meenakshi, S. 2009. Removal of fluoride from aqueous solution using protonated chitosan beads. Journal of Hazardous Materials 161(1): 423-430. https://doi.org/10.1016/j.jhazmat.2008.03.115
  32. Wang, S.G., Gong, W.X., Liu, X.W., Yao, Y.W., Gao, B. Y., Yue, Q.Y. 2007. Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Separation and Purification Technology 58: 17-23. https://doi.org/10.1016/j.seppur.2007.07.006
  33. Yurtsever, M., Şengil, I.A. 2009. Biosorption of Pb(II) ions by modified quebracho tannin resin, Journal of Hazardous Materials 163: 58-64. https://doi.org/10.1016/j.jhazmat.2008.06.077

Cited by

  1. Adsorption Characteristics of Cr6+ and As3+ Using Seaweed Biochar vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1060