DOI QR코드

DOI QR Code

Degradation of Sulfonamide Antibiotic Substances by Ozonation: An Experimental and Computational Approach

설폰아미드계 항생물질의 오존산화분해에 대한 계산화학적 해석 및 실험적 검증

  • Won, Jung Sik (Department of Environmental Engineering, Changwon National University) ;
  • Lim, Dong Hee (Department of Environmental Engineering, Chungbuk National University) ;
  • Seo, Gyu Tae (Department of Environmental Engineering, Changwon National University)
  • Received : 2014.05.14
  • Accepted : 2014.06.27
  • Published : 2014.06.30

Abstract

Concern has grown over a presence of micropollutants in natural water since sulfonamide antibiotic substances such as sulfamethazine, sulfamethoxazole, sulfathiazole have been frequently detected in Nakdong River, Korea. The current work investigates the degradation of the three sulfonamide substances by using quantum chemistry calculations of density functional theory (DFT) and experimental measurement techniques of Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectrophotometer (UV-VIS). DFT calculations demonstrate that the lowest energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbitals (LUMO) lies in sulfanilamide functional group of sulfonamide, implying that the sulfanilamide functional group would be the most active site for ozone oxidation. Also, UV-VIS spectra and FT-IR analysis reveal that 260 nm band originated from sulfanilamide group was absent after ozone oxidation, indicating that a functional group of amine (N-H) was removed from sulfanilamide. Both theoretical and experimental observations agree well with each other, demonstrating the DFT calculation tool can be an alternative tool for the prediction of chemical reactions in purification treatment processes.

본 연구에서는 상수원에서 문제시 되고 있는 미량오염물질의 처리에 대한 연구를 하기 위해선 많은 시간과 비용이 소요되는데, 이를 절감하기 위한 대안으로 양자화학적 기반의 범밀도함수이론(Density Functional Theory, DFT)을 활용하여 물질간의 상호 반응성 및 분해과정을 해석하였다. 본 연구에서 다루고 있는 물질은, 최근 낙동강 수계에서 빈번히 검출되고 있는 Sulfonamide 물질 3종(sulfamethazine, sulfathiazole, sulfamethoxazol)을 선정하였으며, 이론적인 연구로는 DFT모델링, 실험적 연구로는 UV-VIS 및 FT-IR 등의 분광분석을 하여 비교 및 검증을 하였다. DFT모델링을 실시한 결과 Sulfonamide물질의 HOMO(highest occupied molecular orbital)와 오존의 LUMO (lowest unoccupied molecular orbital) 사이에서 반응이 가장 유리하며, Sulfonamide 물질의 HOMO를 가시화 한 결과 Sulfanilamide기에서 전자밀도가 높게 나타나므로 Sulfanilamide기에서 반응이 활발할 것이라 예측되었다. UV-VIS 실험결과 260 nm에서 Sulfanilamide기가 검출되었으며, 오존산화시 검출된 Sulfanilamide기가 빠르게 사라짐을 알 수 있었다. FT-IR분석결과로써 Sulfanilamide기에서도 그 한 부분인 아민기(N-H)에서 가장 활발한 제거반응이 일어남을 알 수 있었으며 이러한 결과로부터 DFT모델링 방법을 통해서 정수처리 공정에 대해서 반응을 예측할 수 있음을 확인하였다.

Keywords

References

  1. Lee, M. J., Ryu, J. N., Oh, J. I. and Kim, H-B., "Occurrence of EDC/PPCPs in Influent and Effluent of a wastewater treatment plant," J. Kor. Soc. Environ. Eng., 31(9), 783(2009).
  2. Choi, K. J., Kim, S. G., Kim, C. W. and Kim, S. H., "Determination of antibiotic compounds in water by online SPELC/MSD," Chemosphere, 66, 977-984(2007). https://doi.org/10.1016/j.chemosphere.2006.07.037
  3. James, S. M. and Richard, T. R., "Toxicity Testing in the 21st Century : A View from the pharmaceutical industry," Toxicol. Sci., 110(1), 40-46(2012).
  4. Han, J. W., "The catalyst design by density functional theory," News & Information Chem. Eng., 32(1), (2014).
  5. Witte, B. D., Langenhobe, H. V., Hemelsoet, K., Demeestere, K., Wispelaere, P. D., Speybroeck, V. V. and Dewwulf, J., "Levofloxacin ozonation in water : Rate determining process parameters and reaction pathway elucidation," Chemosphere, 76, 683-689(2009). https://doi.org/10.1016/j.chemosphere.2009.03.048
  6. Frisch, M. J. et al, Gaussian03, Revision B.05; Gaussian, Inc.: Wallingford, CT(2004).
  7. Huber, M. M., Canonica, S., Park, G.-Y., Von Gunten, "Oxidation of pharmaceuticals during ozonation and advanced oxidation processes," Environ. Sci. Technol. 37(5), 1016-1024(2003). https://doi.org/10.1021/es025896h
  8. Rokhina, E. V., Vattikonda, S. N., Johnson, C. and Suri, P. S., "Ozonation of a mixture of estrogens and progestins in aqueous solution : Interpretation of experimental result by computational methods," Chemosphere, 89, 1323-1329(2012). https://doi.org/10.1016/j.chemosphere.2012.05.084
  9. Kang, Y. Y., Hwang, S. S, Shin, S. K., Koo, S. H., Sim, K. T. and Kim, T. S., "The study of analytical method for sulfonamide antibiotics and their metabolites in envrionmental samples," Anal. Sci. Technol., 23(5), 437-445(2010). https://doi.org/10.5806/AST.2010.23.5.437
  10. Langlais, B. Reckhow, D. A. and Brink, D. R. "Ozone in water treatment application and engineering," AWWAKF Cooperative Report, Lewis Publisher, Chelsea, Mich, pp. 190-213(1991).
  11. Ekaterina, V. and Rominder, P. S. S., "Application of density functional theory (DFT) to study the properties and degradation of natural estrogen hormones with chemical oxidizers," Sci. Total Environ., 417-418, 280-290(2012). https://doi.org/10.1016/j.scitotenv.2011.12.008
  12. Ebenso, E. E., Arslan, T., Kandemirli, F., Love, L., Ogretir, C., Saracoglu M. and Umoren S. A., "Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium," Int. J. Quantum. Chem., 110, 2614-2636 (2010). https://doi.org/10.1002/qua.22430
  13. Huber, M. M., Gobel, A., Joss, A., Hermann, N., Loffler, D., McArdell Christa, S., Ried, A., Siegrist, H., Ternes Thomas, A. and Von Gunten, "Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study," Environ. Sci. Technol., 39(11), 4290-4299(2005). https://doi.org/10.1021/es048396s
  14. Hoigne, J. and Bader, H., "Rate constants of reactions of ozone with organic and inorganic compounds in water-II," Water Res., 17(2), 185-194(1983). https://doi.org/10.1016/0043-1354(83)90099-4
  15. Michael Kent, Advanced Biology, Oxford University Press, p. 46(2000).
  16. Subramanian, G., "A Practical Approach to Chiral Separations by Liquid Chromatography," VCH, New York(1994).
  17. Greene, T. W., "Protective Groups in Organic Synthesis," John Wiley & Sons. Inc, 3rd Ed., New York(1999).
  18. Burgess, K., "Solid-Phase Organic Synthesis," John Wiley & Sons Inc, 3rd Ed., New York(2000).
  19. Junho J., "A study on the mechanism of sulfonamide removal using activated carbon," Changwon Univ., p. 49(2013).
  20. Kim, Y. D., "Studies on the ozonation characteristics of the phenol contaminated wastewater in the continuous PCR and BCR," Kunkuk Univ., p. 32(1995).
  21. Baishu, G., "Transforamtion of sulfonamide antibiotics on soil mineral oxides," Clemson Univ. pp. 2-21(2008).
  22. Ikehata, K., Naghashkar, N. J. and El-Din, M. G., "Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes : A Review," Ozone Sci. Eng., 28, 353-414(2006). https://doi.org/10.1080/01919510600985937
  23. Calza, P., Medana, C., Pazzi, M., Baiocchi, C. and Pelizzetti E., "Photocatalytic Transformations of Sulphonamides on Titanium Dioxide," Appl. Catal. B-Environ., 53(1), 63-69(2004). https://doi.org/10.1016/j.apcatb.2003.09.023
  24. Jung, J., Kim, Y., Kim, J., Jeong, D. H. and Choi, K., "Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna," Ecotoxicol., 17, 37-45(2008). https://doi.org/10.1007/s10646-007-0174-9