DOI QR코드

DOI QR Code

Chemical cleaning of fouled polyethersulphone membranes during ultrafiltration of palm oil mill effluent

  • Said, Muhammad (Department of Chemistry, Faculty of Mathematics and Science, University of Sriwijaya) ;
  • Mohammad, Abdul Wahab (Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia) ;
  • Nor, Mohd Tusirin Mohd (Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia) ;
  • Abdullah, Siti Rozaimah Sheikh (Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia) ;
  • Hasan, Hassimi Abu (Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia)
  • Received : 2014.04.19
  • Accepted : 2014.07.18
  • Published : 2014.07.25

Abstract

Fouling is one of the critical factors associated with the application of membrane technology in treating palm oil mill effluent (POME), due to the presence of high concentration of solid organic matter, oil, and grease. In order to overcome this, chemical cleaning is needed to enhance the effectiveness of membranes for filtration. The potential use of sodium hydroxide (NaOH), sodium chloride (NaCl), hydrochloric acid (HCl), ethylenediaminetetraacetic acid (EDTA), and ultrapure water (UPW) as cleaning agents have been investigated in this study. It was found that sodium hydroxide is the most powerful cleaning agent, the optimum conditions that apply are as follows: 3% for the concentration of NaOH, $45^{\circ}C$ for temperature solution, 5 bar operating pressure, and solution pH 11.64. Overall, flux recovery reached 99.5%. SEM images demonstrated that the membrane surface after cleaning demonstrated similar performance to fresh membranes. This is indicative of the fact that NaOH solution is capable of removing almost all of the foulants from PES membranes.

Keywords

References

  1. Ahmad, A.L., Ismail, S. and Bhatia, S. (2003), "Water recycling from palm oil mill effluent (POME) using membrane technology", Desalination, 157(1-3), 87-95. https://doi.org/10.1016/S0011-9164(03)00387-4
  2. Al-Amoudi, A.S. (2010), "Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review", Desalination, 259(1-3), 1-10. https://doi.org/10.1016/j.desal.2010.04.003
  3. Al-Amoudi, A. and Lovitt, R.W. (2007), "Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency", J. Membr. Sci., 303(1-2), 4-28. https://doi.org/10.1016/j.memsci.2007.06.002
  4. Al-Amoudi, A., Williams, P., Mandale, S. and Lovitt, R.W. (2007), "Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability", Separ. Purif. Technol., 54(2), 234-340. https://doi.org/10.1016/j.seppur.2006.09.014
  5. Amin, I.N.H., Mohammad, A.W., Markom, M., Leo, C.P. and Hilal, N. (2010), "Flux decline study in ultrafiltration of glycerin-rich fatty acid solutions", J. Membr. Sci., 351(1-2), 75-86. https://doi.org/10.1016/j.memsci.2010.01.033
  6. Ang, W.S., Tiraferri, A., Chen, K.L. and Elimelech, M. (2011a), "Fouling and Cleaning of RO membranes fouled by mixture of organic foulants simulating wastewater effluent", J. Membr. Sci., 376(1-2), 196-206. https://doi.org/10.1016/j.memsci.2011.04.020
  7. Ang, W.S., Yip, N.Y., Tiraferri, A. and Elimelech, M. (2011b), "Chemical cleaning of RO membranes fouled by wastewater effluent: Achieving higher efficiency with dual-step cleaning", J. Membr. Sci., 382(1-2), 100-106. https://doi.org/10.1016/j.memsci.2011.07.047
  8. Bird, M.R. and Barlett, M. (2012), "Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate", J. Food Eng., 53(2), 143-152.
  9. Cai, M., Zhao, S. and Liang, H.H. (2010), "Mechanisms for the enhancement of ultrafiltration and membrane cleaning by different ultrasonic frequencies", Desalination, 263(1-3), 133-138 https://doi.org/10.1016/j.desal.2010.06.049
  10. Feng, D., van Deventer, J.S.J. and Aldrich, C. (2006), "Ultrasonic defouling of reverse osmosis membranes used to treat wastewater effluents", Separ. Purif. Technol., 50(3), 318-323. https://doi.org/10.1016/j.seppur.2005.12.005
  11. Hong, S. and Elimelech, M. (1997), "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes", J. Membr. Sci., 132(2), 159-181. https://doi.org/10.1016/S0376-7388(97)00060-4
  12. Lim, A.L. and Bai, R. (2003), "Membrane fouling and cleaning in microfiltration of activated sludge wastewater", J. Membr. Sci., 216(1-2), 279-290. https://doi.org/10.1016/S0376-7388(03)00083-8
  13. Lim, S.L., Wu, T.Y. and Clarke, C. (2014), "Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms", J. Agr. Food Chem., 62(3), 691-698. https://doi.org/10.1021/jf404265f
  14. Madaeni, S.S. and Mansourpanah, Y. (2004), "Chemical cleaning of reverse osmosis membranes fouled by whey", Desalination, 161(1), 13-24. https://doi.org/10.1016/S0011-9164(04)90036-7
  15. Madaeni, S.S. and Samieirad, S. (2010), "Chemical cleaning of reverse osmosis membrane fouled by wastewater", Desalination, 257(1-3), 80-86. https://doi.org/10.1016/j.desal.2010.03.002
  16. Martin-Pascual, J., Reboleiro-Rivas, P., Lopez-Lopez, C., Gonzalez-Lopez, J., Hontoria, E. and Poyatos, J.M. (2014), "Influence of hydraulic retention time on heterotrophic biomass in a wastewater moving bed membrane bioreactor treatment plant", Int. J. Environi. Sci. Tech., 11(5), 1449-1458. https://doi.org/10.1007/s13762-013-0329-6
  17. Masmoudi, G., Trabelsi, R., Ellouze, E. and Amar, R.B. (2014), "New treatment at source approach using combination of microfiltration and nanofiltration for dyeing effluents reuse", Int. J. Environi. Sci. Tech., 11(4), 1007-1016. https://doi.org/10.1007/s13762-013-0303-3
  18. Moghadam, M.K. and Mohammadi, T. (2007), "Chemical cleaning of ultrafiltration membranes in the milk industry", Desalination, 204(1-3), 213-218. https://doi.org/10.1016/j.desal.2006.04.030
  19. Mohammadi, T., Madaeni, S.S. and Moghadam, M.K. (2003), "Investigation of membrane fouling", Desalination, 153(1-3), 155-160. https://doi.org/10.1016/S0011-9164(02)01118-9
  20. Mohammed, R.R. and Chong, M.F. (2014), "Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent", J. Environ. Manag., 132, 237-249. https://doi.org/10.1016/j.jenvman.2013.11.031
  21. Mostefa, N.M., Akoum, O., Nedjihoui, M., Ding, L. and Jaffrin, M.Y. (2007), "Comparison between rotating disk and vibratory membranes in the ultrafiltration of oil-in-water emulsions", Desalination, 206(1-3), 494-498. https://doi.org/10.1016/j.desal.2006.04.061
  22. Porcelli, N. and Judd, S. (2010), "Chemical cleaning of potable water membranes: A review", Separ. Purif. Technol., 71(2), 137-143. https://doi.org/10.1016/j.seppur.2009.12.007
  23. Puspitasari, V., Granville, A., Le-Clech, P. and Chen, V. (2010), "Cleaning and ageing effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane", Separ. Purif. Technol., 72(3), 301-308. https://doi.org/10.1016/j.seppur.2010.03.001
  24. Rai, P., Majumdar, G.C., Sharma, G., Das Gupta, S. and De, S. (2006), "Effect of various cutoff membranes on permeate flux and quality during filtration of mosambi (Citrus sinensis (L.) Osbeck) juice", Food Bioprod. Process., 84(3), 213-219. https://doi.org/10.1205/fbp.05181
  25. Said, M., Ahmad, A., Mohammad, A.W., Nor, M.T.M. and Abdullah, S.R.S. (2014), "Blocking mechanism of PES membrane during ultrafiltration of POME", J. Indust. Eng. Chem. [In Press] DOI: http://dx.doi.org/10.1016/j.jiec.2014.02.023
  26. Salladini, A., Prisciandaro, M. and Barba, D. (2007), "Ultrafiltration of biologically treated waswater by using backflushing", Desalination, 207(1-3), 24-34. https://doi.org/10.1016/j.desal.2006.02.078
  27. Shak, K.P.Y. and Wu, T.Y. (2014), "Coagulation-flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: Treatment efficiencies and flocs characterization", Chem. Eng. J. [In Press] DOI: 10.1016/j.cej.2014.06.093.
  28. Shi, W. and Benjamin, M.M. (2011), "Effect of shear rate on fouling in a Vibratory Shear Enhanced Processing (VSEP) RO system", J. Membr. Sci., 366(1-2), 148-157. https://doi.org/10.1016/j.memsci.2010.09.051
  29. Teh, C.Y., Wu, T.Y. and Juan, J.C. (2014), "Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant", Ind. Crop. Prod., 56, 17-26. https://doi.org/10.1016/j.indcrop.2014.02.018
  30. Vaisanen, P., Bird, M.R. and Nystrom, M. (2002), "Treatment of UF membranes with simple and formulated cleaning agents", Food Bioprod. Process., 80(2), 98-108. https://doi.org/10.1205/09603080252938735
  31. Wah, W.P., Sulaiman, N.M., Nachiappan, M. and Varadaraj, B. (2002), "Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME)", Songklanakarin J. Sci. Technol., 24, 891-898.
  32. Wu, T.Y., Mohammad, A.W., Jahim, J.M. and Anuar, N. (2007), "Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling", Biochem. Eng. J., 35(3), 309-317. https://doi.org/10.1016/j.bej.2007.01.029
  33. Wu, T.Y., Mohammad, A.W., Jahim, J.M. and Anuar, N. (2009), "A holistic approach to managing palm oil mill effluent (POME): Biotechnological advances in the sustainable reuse of POME", Biotechi. Adv., 27(1), 40-52. https://doi.org/10.1016/j.biotechadv.2008.08.005
  34. Wu, T.Y., Mohammad, A.W., Jahim, J.M. and Anuar, N. (2010), "Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes", J. Environi. Manag., 91(7), 1467-1490. https://doi.org/10.1016/j.jenvman.2010.02.008
  35. Yejian, Z., Li, Y., Xiangli, Q., Lina, C., Xiangjun, N., Zhijian, M. and Zhenjia, Z. (2008), "Integration of biological method and membrane technology in treating palm oil mill effluent", J. Environ. Sci., 20(5), 558-564. https://doi.org/10.1016/S1001-0742(08)62094-X
  36. Zhang, G.J. and Liu, Z.Z. (2003), "Membrane fouling and cleaning in ultrafiltration of wastewater from banknote printing works", J. Membr. Sci., 211(2), 235-249. https://doi.org/10.1016/S0376-7388(02)00422-2

Cited by

  1. Novel GO/OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment vol.177, 2017, https://doi.org/10.1016/j.seppur.2017.01.014
  2. Impact of sodium hypochlorite cleaning on the surface properties and performance of PVDF membranes vol.428, 2018, https://doi.org/10.1016/j.apsusc.2017.09.056
  3. Optimization of POME treatment process using microalgae and ultrafiltration vol.6, pp.4, 2015, https://doi.org/10.12989/mwt.2015.6.4.293
  4. Tackling colour issue of anaerobically-treated palm oil mill effluent using membrane technology vol.8, 2015, https://doi.org/10.1016/j.jwpe.2015.10.010
  5. Artificial Neural Network (ANN) for Optimization of Palm Oil Mill Effluent (POME) Treatment using Reverse Osmosis Membrane vol.1095, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1095/1/012021
  6. Membrane-based zero-sludge palm oil mill plant vol.0, pp.0, 2020, https://doi.org/10.1515/revce-2017-0117
  7. Separation of Water-Oil Emulsions Using Composite Membranes with a Cellulose Acetate Surface Layer vol.55, pp.7, 2014, https://doi.org/10.1007/s10556-019-00674-x
  8. Consecutive chemical cleanings of hollow fiber ultrafiltration membranes from a pilot-scale surface water treatment plant vol.12, pp.4, 2014, https://doi.org/10.12989/mwt.2021.12.4.139