References
- Arnold, D.V. (2006), "Weighted multirecombination evolution strategies", Theor. Comput. Sci., 361(1), 18-37. https://doi.org/10.1016/j.tcs.2006.04.003
- Arnold, D.V. and Beyer, H.G. (2002), "Performance analysis of evolution strategies with multi-recombination in high-dimensional RN-search spaces disturbed by noise", Theor. Comput. Sci., 289(1), 629-647. https://doi.org/10.1016/S0304-3975(01)00384-X
- Auger, A. (2009), "Benchmarking the (1+1) evolution strategy with one-Fifth success rule on the BBOB-2009 function testbed", Proceedings of the GECCO'09, Montreal Quebec, Canada.
- Beyer, H.G. and Sendhoff, B. (2008), Covariance matrix adaptation revisited-the CMSA evolution strategy, (Eds., Rudolph, G., Jansen, Th., Lucas, S.M., Poloni, C. and Beume, N. ), Parallel Problem Solving from Nature - PPSN X, Springer.
- Beyer, H.G. and Schwefel, H.P. (2002), "Evolution strategies: a comprehensive introduction", Nat. Comput., 1(1), 3-52. https://doi.org/10.1023/A:1015059928466
- Casciati, S. (2008), "Stiffness identification and damage localization via differential evolution algorithms", Struct. Control Health Monit., 15(3), 436-449. https://doi.org/10.1002/stc.236
- Casciati, S. (2010), "Statistical approach to a SHM benchmark problem", Smart Struct. Syst., 6(1), 17-27. https://doi.org/10.12989/sss.2010.6.1.017
- Dertimanis, V.K., Koulocheris, D., Vrazopoulos, H. and Kanarachos, A. (2003), "Time-series parametric modeling using Evolution Strategy with deterministic mutation operators", Proceedings of the International Conference on Intelligent Control Systems and Signal Processing, Faro, Portugal.
- Faravelli, L. and Casciati, S. (2004) "Structural damage detection and localization by response change diagnosis", Struct. Saf., 6(2), 104-115.
- Fassois, S.D. (2001), "MIMO LMS-ARMAX identification of vibrating structures-Part I: the method", Mech. Syst. Signal Pr., 15(4), 737-758. https://doi.org/10.1006/mssp.2000.1385
- Franco, G., Betti, R. and Lus, H. (2004), "Identification of structural systems using an evolutionary strategy", J. Eng. Mech. -ASCE , 130(10), 1125-1139. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1125)
- Hansen, N. (2006), The CMA evolution strategy: a comparing review, (Eds., J.A. Lozano, P. Larranga, I. Inza and E. Bengoetxea), Towards a new evolutionary computation: Advances in estimation of distribution algorithms, Springer.
- Hansen, N. and Ostermeier, A. (2001), "Completely derandomized self-adaptation in evolution strategies", Evol. Comput., 9(2), 159-195. https://doi.org/10.1162/106365601750190398
-
Hansen, N. and Ostermeier, A. (1997), "Convergence properties of evolution strategies with the derandomized covariance matrix adaptation: the (
$\mu$ /$\mu_I$ ,$\lambda$ )-CMA-ES", Proceedings of the 5th European Congress on Intelligent techniques and Soft Computing, Aachen, Germany. - Huang, C.S. (2001), "Structural identification from ambient vibration using the multivariate AR model", J. Sound Vib., 241(3), 337-359. https://doi.org/10.1006/jsvi.2000.3302
- Huang, J.N. and Pappa, R.S. (1985), "An eigensystem realization algorithm (ERA) for modal parameter identification and model reduction", J. Guid. Control Dynam., 8, 620-627. https://doi.org/10.2514/3.20031
- Katayama, T. (2005), Subspace methods for system identification, Springer-Verlag, Berlin, Germany.
- Koulocheris, D., Dertimanis, V.K. and Spentzas, C.N. (2008), "Parametric identification of vehicle structural characteristics", Forsch. Ingenieurwes., 68(4), 173-181.
- Koulocheris, D., Dertimanis, V.K. and Vrazopoulos, H. (2004), "Evolutionary parametric identification of dynamic systems", Forsch. Ingenieurwes., 72(1), 39-51.
- Koulocheris, D., Dertimanis, V.K. and Vrazopoulos, H. (2003), "Vehicle suspension system identification using evolutionary algorithms", Proceedings of the EUROGEN 2003, Barcelona, Spain.
- Kruisselbrink, J.W. (2012), Evolution strategies for robust optimization, PhD Thesis, Leiden University, Leiden, The Netherlands.
- Landau, I.D. and Zito, G. (2006), Digital control systems: design, identification and implementation, Springer-Verlag, London, UK.
- Ljung, L. (1999), System identification: theory for the user, 2nd Ed., Prentice-Hall Inc., Englewood Cliffs, NJ, USA.
- Mc Kelvey, T. and Helmersson, A. (1997), "System identification using an over-parameterized model class - Improving the optimization algorithm", Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA.
- Ostermeier, A., Gawelczyk, A. and Hansen, N. (1994), "Step-size adaptation based on non-local use of selection information", in Parallel Problem Solving from Nature - PPSN III, Springer.
- Tang, H.S., Xue S.T. and Fan. C. (2008), "Differential evolution strategy for structural system identification", Comput. Struct., 86(21-22), 2004-2012. https://doi.org/10.1016/j.compstruc.2008.05.001
- Van Overschee, P. and De Moor, B. (1996), Subspace identification for linear systems: theory - Implementation - Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Verhaegen, M. and Dewilde, P. (1992), "Subspace model identification Part 1. the output-error state-space model identification class of algorithms", Int. J. Control, 56(5), 1187-1210. https://doi.org/10.1080/00207179208934363
- Verhaegen, M. and Verdult, V. (2007), Filtering and system identification: a least squares approach, 2nd Ed., Prentice-Hall Inc., Englewood Cliffs, NJ, USA.
- Viberg, M. (1995), "Subspace-based methods for the identification of linear time-invariant systems", Automatica, 31(12), 1835-1851. https://doi.org/10.1016/0005-1098(95)00107-5
- Zhang, Z., Koh, C.G. and Duan, W.H. (2010a), "Uniformly sampled genetic algorithm with gradient search for structural identification - Part I: Global search", Comput. Struct., 88(15-16), 949-962. https://doi.org/10.1016/j.compstruc.2010.05.001
- Zhang, Z., Koh, C.G. and Duan, W.H. (2010b), "Uniformly sampled genetic algorithm with gradient search for structural identification - Part II: Local search", Comput. Struct., 88(19-20), 1149-1161. https://doi.org/10.1016/j.compstruc.2010.07.004
Cited by
- Hybrid evolutionary identification of output-error state-space models vol.1, pp.4, 2014, https://doi.org/10.12989/smm.2014.1.4.427
- Data-driven uncertainty quantification of structural systems via B-spline expansion 2017, https://doi.org/10.1016/j.compstruc.2017.03.006