References
- Achenbach, E. (1968), "Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re=5? 106", J. Fluid Mech., 34, 625-639. https://doi.org/10.1017/S0022112068002120
- Bathe, K.J. and Ledezma, G.A. (2007), "Benchmark problems for incompressible fluid flows with structural interactions", Comput. Struct., 85(11-14), 628-644. https://doi.org/10.1016/j.compstruc.2007.01.025
- Catalano, P., Wang, M., Iaccarino, G. and Moin, P. (2003), "Numerical simulation of the flow around a circular cylinder at high Reynolds numbers", Int. J. Heat Fluid Fl., 24 (4), 463-469. https://doi.org/10.1016/S0142-727X(03)00061-4
- Degroote. J., Bathe, K.J. and Vierendeels J. (2009), "Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction", Comput. Struct., 87(11-12), 793-801. https://doi.org/10.1016/j.compstruc.2008.11.013
- Etienne, S. and Pelletier, D. (2004), "A monolithic formulation for steady-state fluid-structure interaction problems", Proceedings of the 34th AIAA Fluid Dynamics Conference and Exhibition, Portland, Oregon, U.S.A., 28 June - 01 July.
- Forster. C., Wall, W.A. and Ramm, E. (2005), "On the geometric conservation law in transient flow calculations on deforming domains", Int. J. Numer. Meth. Fl., 50(12), 1369-1379.
- Gil, A.J. (2006), "Structural analysis of prestressed Saint Venant-Kirchhoff hyperelastic membranes subjected to moderate strains", Comput. Struct., 84(15-16), 1012-1028. https://doi.org/10.1016/j.compstruc.2006.02.009
- Gluck, M., Breuer, M., Durst, F., Halfmann, A. and Rank, E (2003), "Computation of wind-induced vibrations of flexible shells and membranous structures", J. Fluid. Struct., 17(5), 739-765. https://doi.org/10.1016/S0889-9746(03)00006-9
- Habchi, C., Russeil, S. and Bougeard, D. (2013), "Partitioned solver for strongly coupled fluid-structure interaction", Comput. Fluids, 71, 306-319. https://doi.org/10.1016/j.compfluid.2012.11.004
- Hachem, E., Feghali, S., Codina, R. and Coupez, T. (2013), "Anisotropic adaptive meshing and monolithic Variational Multiscale method for fluid-structure interaction", Comput. Struct., 122, 88-100. https://doi.org/10.1016/j.compstruc.2012.12.004
- Heil, M. (2004), "An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems", Comput. Method. Appl. M., 193(1-2), 1-23. https://doi.org/10.1016/j.cma.2003.09.006
- Hoffman, J. and Jansson, N.A. (2011), A Computational study of turbulent flow separation for a circular cylinder using skin friction boundary conditions, Quality and reliability of large-eddy simulations II; ERCOFTAC series, Netherlands: Springer.
- Hubner, B., Walhorn, E. and Dinkler, D. (2004), "A monolithic approach to fluid-structure interaction using space-time finite elements", Comput. Method. Appl. Mech. Engrg., 193(23-26), 2087-2104. https://doi.org/10.1016/j.cma.2004.01.024
- James, W.D., Paris, S.W. and Malcolm, G.N. (1980), "Study of viscous crossflow effects on circular cylinders at high Reynolds numbers", AIAA J., 18(9), 1066-1072. https://doi.org/10.2514/3.50855
- Li ,C., Li, Q.S., Huang, S.H., and Xiao, Y.Q. (2010), "Large eddy simulation of wind loads on a long-span spatial lattice roof", Wind Struct., 13(1), 57-83. https://doi.org/10.12989/was.2010.13.1.057
- Li, H.N., Yi, T.H., Jing, Q.Y., Huo, L.S. and Wang, G.X. (2012), "Wind-induced vibration control of Dalian international trade mansion by tuned liquid dampers". Math. Probl. Eng., 2012(2012), 1-20.
- Lima, A.L.F., Silva, E., Silveira-Neto, A. and Damasceno, J.J.R (2003), "Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method", J. Comput. Phys., 189(2), 351-370. https://doi.org/10.1016/S0021-9991(03)00214-6
- Mao, G.D., Sun, B.N. and Lou, W.J. (2004), "The added air mass for membrane structures", Eng. Mech., 21(1), 153-158.
- Marukawa, H., Katon, N., Fujii, K. and Tamura, Y. (1996), "Experimental evaluation of aerodynamic damping of tall buildings", J. Wind Eng. Aerod., 59(2-3), 177-190. https://doi.org/10.1016/0167-6105(96)00006-2
- Michalski, A, Haug, E., Bradatsch, J. and Bletzinger, K.U. (2009), "Virtual design methodology for lightweight structures - aerodynamic response of membrane structures", Int. J. Space Struct., 24(4), 211-221. https://doi.org/10.1260/026635109789968245
- Michalski, A., Kermel, P.D., Haug, E., Lohner, R., Wuchner, R. and Bletzinger, K.U. (2011), "Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow", J. Wind Eng. Aerod., 99(4), 400-413. https://doi.org/10.1016/j.jweia.2010.12.010
- Minami, H., Okuda, Y. and Kawamura, S. (1996), "The critical condition for occurrence of fluttering of membrane suspended in uniform air flow", J. Wind Eng., 1996(66), 27-34. https://doi.org/10.5359/jawe.1996.27
- Park, J., Kwon, K. and Choi, H. (1998), "Numerical solutions of flow past a circular cylinder at Reynolds number up to 160", J. Mech. Sci. Technol., 12(6), 1200-1205.
- Revuz, J., Hargreaves, D.M. and Owen, J.S. (2012), "On the domain size for the steady-state CFD modelling of a tall building", Wind Struct., 15(3), 313-329. https://doi.org/10.12989/was.2012.15.4.313
- Richter, T. (2013), "A fully Eulerian formulation for fluid-structure-interaction problems", J. Comput. Phys., 233, 227-240. https://doi.org/10.1016/j.jcp.2012.08.047
- Stein, K., Tezduyar, T. and Benney, R. (2003), "Mesh moving techniques for fluid-structure interactions with large displacements", J. Appl. Mech. - T ASME, 70(1),58-63. https://doi.org/10.1115/1.1530635
- Singh, S.P. and Mittal, S. (2005), "Flow past a cylinder: shear layer instability and drag crisis", Int. J. Numer. Meth. Fl., 47(1), 75-98. https://doi.org/10.1002/fld.807
- Stein, K., Tezduyar, T. and Benney, R. (2003), "Mesh moving techniques for fluid-structure interactions with large displacements", J. Appl. Mech. - T ASME, 70(1), 58-63. https://doi.org/10.1115/1.1530635
- Sun, X.Y. (2007), Study on wind-structure interaction in wind-induced vibration of membrane structures, Ph.D. Thesis, Harbin Institute of Technology, China.
- Turek, S. and Hron, J. (2006), Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Lecture Notes in Computational Science and Engineering .
- Uematsu, Y. and Isyumov, N. (1999), "Wind pressures acting on low-rise building", J. Wind Eng. Ind. Aerod., 82(1-3), 1-25. https://doi.org/10.1016/S0167-6105(99)00036-7
- Yang, W., Quan, Y., Xinyang, J., Tamura, Y. and Gu, M. (2008), "On the influences of equilibrium atmosphere boundary layer and turbulence parameters in CWE", J. Wind Eng. Ind. Aerod., 96(10-11), 2080-2092. https://doi.org/10.1016/j.jweia.2008.02.014
- Wuchner, R., Kupzok, A. and Bletzinger, K. (2007), "A framework for stabilized partitioned analysis of thin membrane - wind interaction", Int. J. Numer. Meth. Fl., 54(6-8), 945-963. https://doi.org/10.1002/fld.1474
- Ye, T., Mittal, R., Udaykumar, H.S. and Shyy, W. (1999), "An accurate Cartesian grid method for viscous incompressible flows with complex boundaries", J. Comput. Phys., 156(2), 209-240. https://doi.org/10.1006/jcph.1999.6356
- Yang, Y., Gu, M., Chen, S. and Xinyang, J. (2009), "New inflow boundary conditions for modeling equilibrium atmosphere boundary layer in CWE", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001
- Zhang, L.Q., Li, H., Wu, Y. and Shen, S.Z. (2005), "Identification of wind vibration frequency and aerodynamic damping of cable-membrane structures base on wavelet transformation", Proceedings of the 12th National Academic Conference on Wind Engineering, China, October.
- Zienkiewicz, O.C. and Zhu, J.Z. (1992a), "The super convergent patch recovery and a posteriori error estimates, Part 1: the recovery technique", Int. J. Numer. Meth. Eng., 33(7), 1331-1364. https://doi.org/10.1002/nme.1620330702
- Zienkiewicz, O.C. and Zhu, J.Z. (1992b), "The super convergent patch recovery and a posteriori error estimates, Part 2: error estimates and adaptivity", Int. J. Numer. Meth. Eng., 33(7), 1365-1382. https://doi.org/10.1002/nme.1620330703
Cited by
- Nonlinear wind-induced aerodynamic stability of orthotropic saddle membrane structures vol.164, 2017, https://doi.org/10.1016/j.jweia.2017.02.006
- Preconditioning technique for a simultaneous solution to wind-membrane interaction vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.349
- The analysis of flow characteristics in multi-channel heat meter based on fluid structure model vol.27, pp.4, 2015, https://doi.org/10.1016/S1001-6058(15)60524-8
- Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution vol.25, pp.4, 2017, https://doi.org/10.12989/was.2017.25.4.381
- Nonlinear wind-induced instability of orthotropic plane membrane structures vol.25, pp.5, 2017, https://doi.org/10.12989/was.2017.25.5.415
- Numerical Analysis of Wind-Induced Response of a Wrinkled Membrane vol.20, pp.5, 2014, https://doi.org/10.1142/s021945542050056x
- Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium vol.30, pp.2, 2014, https://doi.org/10.12989/was.2020.30.2.133
- Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2014, https://doi.org/10.12989/csm.2020.9.3.281
- Study on Fluid-Structure Interaction of Flexible Membrane Structures in Wind-Induced Vibration vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/8890593