DOI QR코드

DOI QR Code

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin (College of Civil Engineering and Architecture, Liaoning Technical University) ;
  • Gu, Ming (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
  • Received : 2013.11.04
  • Accepted : 2014.04.01
  • Published : 2014.07.25

Abstract

A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

Keywords

References

  1. Achenbach, E. (1968), "Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re=5? 106", J. Fluid Mech., 34, 625-639. https://doi.org/10.1017/S0022112068002120
  2. Bathe, K.J. and Ledezma, G.A. (2007), "Benchmark problems for incompressible fluid flows with structural interactions", Comput. Struct., 85(11-14), 628-644. https://doi.org/10.1016/j.compstruc.2007.01.025
  3. Catalano, P., Wang, M., Iaccarino, G. and Moin, P. (2003), "Numerical simulation of the flow around a circular cylinder at high Reynolds numbers", Int. J. Heat Fluid Fl., 24 (4), 463-469. https://doi.org/10.1016/S0142-727X(03)00061-4
  4. Degroote. J., Bathe, K.J. and Vierendeels J. (2009), "Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction", Comput. Struct., 87(11-12), 793-801. https://doi.org/10.1016/j.compstruc.2008.11.013
  5. Etienne, S. and Pelletier, D. (2004), "A monolithic formulation for steady-state fluid-structure interaction problems", Proceedings of the 34th AIAA Fluid Dynamics Conference and Exhibition, Portland, Oregon, U.S.A., 28 June - 01 July.
  6. Forster. C., Wall, W.A. and Ramm, E. (2005), "On the geometric conservation law in transient flow calculations on deforming domains", Int. J. Numer. Meth. Fl., 50(12), 1369-1379.
  7. Gil, A.J. (2006), "Structural analysis of prestressed Saint Venant-Kirchhoff hyperelastic membranes subjected to moderate strains", Comput. Struct., 84(15-16), 1012-1028. https://doi.org/10.1016/j.compstruc.2006.02.009
  8. Gluck, M., Breuer, M., Durst, F., Halfmann, A. and Rank, E (2003), "Computation of wind-induced vibrations of flexible shells and membranous structures", J. Fluid. Struct., 17(5), 739-765. https://doi.org/10.1016/S0889-9746(03)00006-9
  9. Habchi, C., Russeil, S. and Bougeard, D. (2013), "Partitioned solver for strongly coupled fluid-structure interaction", Comput. Fluids, 71, 306-319. https://doi.org/10.1016/j.compfluid.2012.11.004
  10. Hachem, E., Feghali, S., Codina, R. and Coupez, T. (2013), "Anisotropic adaptive meshing and monolithic Variational Multiscale method for fluid-structure interaction", Comput. Struct., 122, 88-100. https://doi.org/10.1016/j.compstruc.2012.12.004
  11. Heil, M. (2004), "An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems", Comput. Method. Appl. M., 193(1-2), 1-23. https://doi.org/10.1016/j.cma.2003.09.006
  12. Hoffman, J. and Jansson, N.A. (2011), A Computational study of turbulent flow separation for a circular cylinder using skin friction boundary conditions, Quality and reliability of large-eddy simulations II; ERCOFTAC series, Netherlands: Springer.
  13. Hubner, B., Walhorn, E. and Dinkler, D. (2004), "A monolithic approach to fluid-structure interaction using space-time finite elements", Comput. Method. Appl. Mech. Engrg., 193(23-26), 2087-2104. https://doi.org/10.1016/j.cma.2004.01.024
  14. James, W.D., Paris, S.W. and Malcolm, G.N. (1980), "Study of viscous crossflow effects on circular cylinders at high Reynolds numbers", AIAA J., 18(9), 1066-1072. https://doi.org/10.2514/3.50855
  15. Li ,C., Li, Q.S., Huang, S.H., and Xiao, Y.Q. (2010), "Large eddy simulation of wind loads on a long-span spatial lattice roof", Wind Struct., 13(1), 57-83. https://doi.org/10.12989/was.2010.13.1.057
  16. Li, H.N., Yi, T.H., Jing, Q.Y., Huo, L.S. and Wang, G.X. (2012), "Wind-induced vibration control of Dalian international trade mansion by tuned liquid dampers". Math. Probl. Eng., 2012(2012), 1-20.
  17. Lima, A.L.F., Silva, E., Silveira-Neto, A. and Damasceno, J.J.R (2003), "Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method", J. Comput. Phys., 189(2), 351-370. https://doi.org/10.1016/S0021-9991(03)00214-6
  18. Mao, G.D., Sun, B.N. and Lou, W.J. (2004), "The added air mass for membrane structures", Eng. Mech., 21(1), 153-158.
  19. Marukawa, H., Katon, N., Fujii, K. and Tamura, Y. (1996), "Experimental evaluation of aerodynamic damping of tall buildings", J. Wind Eng. Aerod., 59(2-3), 177-190. https://doi.org/10.1016/0167-6105(96)00006-2
  20. Michalski, A, Haug, E., Bradatsch, J. and Bletzinger, K.U. (2009), "Virtual design methodology for lightweight structures - aerodynamic response of membrane structures", Int. J. Space Struct., 24(4), 211-221. https://doi.org/10.1260/026635109789968245
  21. Michalski, A., Kermel, P.D., Haug, E., Lohner, R., Wuchner, R. and Bletzinger, K.U. (2011), "Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow", J. Wind Eng. Aerod., 99(4), 400-413. https://doi.org/10.1016/j.jweia.2010.12.010
  22. Minami, H., Okuda, Y. and Kawamura, S. (1996), "The critical condition for occurrence of fluttering of membrane suspended in uniform air flow", J. Wind Eng., 1996(66), 27-34. https://doi.org/10.5359/jawe.1996.27
  23. Park, J., Kwon, K. and Choi, H. (1998), "Numerical solutions of flow past a circular cylinder at Reynolds number up to 160", J. Mech. Sci. Technol., 12(6), 1200-1205.
  24. Revuz, J., Hargreaves, D.M. and Owen, J.S. (2012), "On the domain size for the steady-state CFD modelling of a tall building", Wind Struct., 15(3), 313-329. https://doi.org/10.12989/was.2012.15.4.313
  25. Richter, T. (2013), "A fully Eulerian formulation for fluid-structure-interaction problems", J. Comput. Phys., 233, 227-240. https://doi.org/10.1016/j.jcp.2012.08.047
  26. Stein, K., Tezduyar, T. and Benney, R. (2003), "Mesh moving techniques for fluid-structure interactions with large displacements", J. Appl. Mech. - T ASME, 70(1),58-63. https://doi.org/10.1115/1.1530635
  27. Singh, S.P. and Mittal, S. (2005), "Flow past a cylinder: shear layer instability and drag crisis", Int. J. Numer. Meth. Fl., 47(1), 75-98. https://doi.org/10.1002/fld.807
  28. Stein, K., Tezduyar, T. and Benney, R. (2003), "Mesh moving techniques for fluid-structure interactions with large displacements", J. Appl. Mech. - T ASME, 70(1), 58-63. https://doi.org/10.1115/1.1530635
  29. Sun, X.Y. (2007), Study on wind-structure interaction in wind-induced vibration of membrane structures, Ph.D. Thesis, Harbin Institute of Technology, China.
  30. Turek, S. and Hron, J. (2006), Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Lecture Notes in Computational Science and Engineering .
  31. Uematsu, Y. and Isyumov, N. (1999), "Wind pressures acting on low-rise building", J. Wind Eng. Ind. Aerod., 82(1-3), 1-25. https://doi.org/10.1016/S0167-6105(99)00036-7
  32. Yang, W., Quan, Y., Xinyang, J., Tamura, Y. and Gu, M. (2008), "On the influences of equilibrium atmosphere boundary layer and turbulence parameters in CWE", J. Wind Eng. Ind. Aerod., 96(10-11), 2080-2092. https://doi.org/10.1016/j.jweia.2008.02.014
  33. Wuchner, R., Kupzok, A. and Bletzinger, K. (2007), "A framework for stabilized partitioned analysis of thin membrane - wind interaction", Int. J. Numer. Meth. Fl., 54(6-8), 945-963. https://doi.org/10.1002/fld.1474
  34. Ye, T., Mittal, R., Udaykumar, H.S. and Shyy, W. (1999), "An accurate Cartesian grid method for viscous incompressible flows with complex boundaries", J. Comput. Phys., 156(2), 209-240. https://doi.org/10.1006/jcph.1999.6356
  35. Yang, Y., Gu, M., Chen, S. and Xinyang, J. (2009), "New inflow boundary conditions for modeling equilibrium atmosphere boundary layer in CWE", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001
  36. Zhang, L.Q., Li, H., Wu, Y. and Shen, S.Z. (2005), "Identification of wind vibration frequency and aerodynamic damping of cable-membrane structures base on wavelet transformation", Proceedings of the 12th National Academic Conference on Wind Engineering, China, October.
  37. Zienkiewicz, O.C. and Zhu, J.Z. (1992a), "The super convergent patch recovery and a posteriori error estimates, Part 1: the recovery technique", Int. J. Numer. Meth. Eng., 33(7), 1331-1364. https://doi.org/10.1002/nme.1620330702
  38. Zienkiewicz, O.C. and Zhu, J.Z. (1992b), "The super convergent patch recovery and a posteriori error estimates, Part 2: error estimates and adaptivity", Int. J. Numer. Meth. Eng., 33(7), 1365-1382. https://doi.org/10.1002/nme.1620330703

Cited by

  1. Nonlinear wind-induced aerodynamic stability of orthotropic saddle membrane structures vol.164, 2017, https://doi.org/10.1016/j.jweia.2017.02.006
  2. Preconditioning technique for a simultaneous solution to wind-membrane interaction vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.349
  3. The analysis of flow characteristics in multi-channel heat meter based on fluid structure model vol.27, pp.4, 2015, https://doi.org/10.1016/S1001-6058(15)60524-8
  4. Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution vol.25, pp.4, 2017, https://doi.org/10.12989/was.2017.25.4.381
  5. Nonlinear wind-induced instability of orthotropic plane membrane structures vol.25, pp.5, 2017, https://doi.org/10.12989/was.2017.25.5.415
  6. Numerical Analysis of Wind-Induced Response of a Wrinkled Membrane vol.20, pp.5, 2014, https://doi.org/10.1142/s021945542050056x
  7. Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium vol.30, pp.2, 2014, https://doi.org/10.12989/was.2020.30.2.133
  8. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2014, https://doi.org/10.12989/csm.2020.9.3.281
  9. Study on Fluid-Structure Interaction of Flexible Membrane Structures in Wind-Induced Vibration vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/8890593