DOI QR코드

DOI QR Code

Analysis of Features and Discriminability of Transient Signals for a Shallow Water Ambient Noise Environment

천해 배경잡음 환경에 적합한 과도신호의 특징 및 변별력 분석

  • Lee, Jaeil (Dept. of Ocean System Engineering, Jeju Nat'l University) ;
  • Kang, Youn Joung (Dept. of Ocean System Engineering, Jeju Nat'l University) ;
  • Lee, Chong Hyun (Dept. of Ocean System Engineering, Jeju Nat'l University) ;
  • Lee, Seung Woo (Sonar Systems PMO, Agency for Defense Development) ;
  • Bae, Jinho (Dept. of Ocean System Engineering, Jeju Nat'l University)
  • 이재일 (제주대학교 해양시스템공학과) ;
  • 강윤정 (제주대학교 해양시스템공학과) ;
  • 이종현 (제주대학교 해양시스템공학과) ;
  • 이승우 (국방과학연구소 소나체계개발단) ;
  • 배진호 (제주대학교 해양시스템공학과)
  • Received : 2014.01.10
  • Accepted : 2014.06.26
  • Published : 2014.07.25

Abstract

In this paper, we analyze the discriminability of features for the classification of transient signals with an ambient noise in a shallow water. For the classification of the transient signals, robust features for the variance of a noise are required due to a low SNR under a marine environment. In the modelling the ambient noise in shallow water, theoretical noise model, Wenz's observation data from the shallow water, and Yule-walker filter are used. Discrimination of each feature of the transient signals with an additive ambient noise is analyzed by utilizing a Fisher score. As the analysis of a classification accuracy about the transient signals of 24 classes using the selected features with a high discriminability, the features selected in the environment without a noise relatively have a good classification accuracy. From the analyzed results, we finally select a total 16 features out of 28 features. The recognition using the selected features results in the classification accuracy of 92% in SNR 20dB using Multi-class SVM.

본 논문에서는 천해 배경잡음 환경에서 과도신호 분류에 적합한 특징 선택을 위해 특징의 변별력을 분석하였다. 과도신호 분류는 해양환경 특성상 낮은 신호대잡음비(SNR)를 가지므로 잡음변화에 강인한 특징이 요구된다. 천해 배경잡음을 모델링하기 위해 이론적인 잡음 모델과 Wenz의 천해 관측 자료 그리고 Yule walker 필터를 이용하였다. 과도신호의 SNR에 따른 각 특징의 변별력은 Fisher score를 이용하여 분석하였다. 변별력이 높은 특징을 선택하여 24 클래스의 과도신호원에 대한 분류정확도를 분석한 결과 잡음이 없는 환경에서 선택된 특징에서 상대적으로 높은 분류정확도를 보였다. 이러한 결과를 토대로 최종적으로 선택된 특징은 전체 28가지 특징 중 16가지 특징이 선택되었다. 다중 클래스 SVM분류기를 이용하여 선택된 특징의 인식률 분석결과 과도신호의 SNR 20dB 환경에서 약92%의 분류정확도를 보였다.

Keywords

References

  1. X. Lurton, An introduction to underwater acoustics: principles and applications, 2nd edition, Springer, 2010.
  2. T. H. Bok, J. Kim, D. G. Paeng, C. H. Lee, J. Bae, and S. Kim, "Extraction of an Underwater Transient Signal Using Sound Mask-filter," J. Acoust. Soc. Korea, Vol. 31, No. 8, pp. 532-514, 2012. https://doi.org/10.7776/ASK.2012.31.8.532
  3. G. M. Wenz, "Acoustic ambient noise in the ocean: spectra and sources," J. Acoust. Soc. Am., Vol. 34, no. 12, pp. 1396-1956, 1962. https://doi.org/10.1121/1.1918357
  4. S. Vagle, W. G. Large and D. M. Farmer, "An Evaluation of the WOTAN Technique of Inferring Oceanic Winds from Underwater Ambient Sound," J. Atmos. Oceanic Technol., Vol. 7, no. 4, pp. 576-595, 1990. https://doi.org/10.1175/1520-0426(1990)007<0576:AEOTWT>2.0.CO;2
  5. S. Yang, Z. Li and X. Wang, "Ship recognition via its radiated sound: The fractal based approaches," J. Acoust. Soc. Am., Vol. 112, no. 1, pp. 172-177, 2002. https://doi.org/10.1121/1.1487840
  6. J. Kim, T. H. Bok, D. G. Paeng, J. Bea, C. H. Lee, and S. Kim, "Classification of Transient Signals in Ocean Background Noise Using Bayesian Classifier," J. Ocean Eng. Technology, Vol. 26, No. 4, pp. 57-63, 2012. https://doi.org/10.5574/KSOE.2012.26.4.057
  7. T. G. Lim, K. S. Bae, C. S. Hwang, and H. U. Lee, "Underwater Transient Signal Classification Using Eigen Decomposition Based on Wigner-Ville Distribution Function," J. Acoust. Soc. Korea, Vol. 26, No. 3, pp. 123-128, 2007.
  8. A. Kundu, G. C. Chen, C. E. Persons, "Transient sonar signal classification using hidden Markov models and neural nets," IEEE J. Ocean. Eng., Vol. 19, Issue 1, pp. 87-99, 1994. https://doi.org/10.1109/48.289454
  9. T. L. Hemminger, Y. H. Pao, "Detection and classification of underwater acoustic transients using neural networks," IEEE Tran. Neural Networks, Vol. 5 Issue 5, pp. 712-718, 1994. https://doi.org/10.1109/72.317723
  10. S. Tucker, J. Brown, "Classification of transient sonar sounds using perceptually motivated features," IEEE J. Ocean. Eng., Vol. 30, Issue 3, pp, 588-600, 2005. https://doi.org/10.1109/JOE.2005.850910
  11. B. Boashash and P. O'Shea, "A methodology for detection and classification of some underwater acoustic signals using time-frequency analysis techniques," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, no. 11, pp. 1829-1841, 1990. https://doi.org/10.1109/29.103085
  12. P. M. Oliveira, V. Lobo, V. Barroso and F. Moura-Pires, "Detection and classification of underwater transients with data driven methods based on time-frequency distributions and non-parametric classifiers," OCEANS '02 MTS/IEEE Vol. 1, pp. 12-16, 2002.
  13. T. G. Lim, I. H. Kim, T. H. Kim, and K. S. Bae, "Frame Based Classification of Underwater Transient Signal Using MFCC Feature Vector and Neural Network," in Proc. of IEEK summer Conf., pp. 883-884, Jeju, Korea, June 2008.
  14. T. Lim, K. Bae, C. Hwang, and H. Lee, "Classification of underwater transient signals using MFCC feature vector," IEEE conference, ISSPA 2007, pp. 1-4, 2007.
  15. S. Tucker and G. J. Brown, "Modelling the auditory perception of size shape and material: applications to the classification of transient sonar sounds," in Proc. 114th Conv. Audio Eng. Soc., Amsterdam, 2003.
  16. R. J. Urick, Principles of underwater sound, 3rd edition, McGraw-Hill, 1983.
  17. J. Lee, J. Bae, C. H. Lee, S. W. Lee, and S. Kim, "Similarity Analysis of Underwater Transient signals using Fisher Score," in Proc. of IEEK summer Conf., pp. 316-319, Jeju, Korea, June 2013.
  18. S. Mcadams, "Perspectives on the Contribution of Timbre to Musical Structure," J. Computer Music Journal, Vol. 23, pp. 85-102, 1999.
  19. A. Ridge, "Scalar parameter extraction from FFT data for transient association," Internal report, Sound Concepts Department, QinetiQ, Winfrith, UK, 2003.
  20. C. A. Jensen, M. A. El-Sharkawi, and R. J. Marks, "Power System Security Assessment Using Neural Networks: Feature Selection Using Fisher Discrimination," IEEE Trans. on Power Sys., Vol. 16, No. 4, pp. 757-763, 2001. https://doi.org/10.1109/59.962423
  21. Y. J. Kang, C. H. Lee, J. Bae, J. Lee, J. H. Kwon, N. Lee, and M. Ahn, "The Classification Algorithm Using Tree Decision Structures Based on Support Vector Machines," in Proc. of IEEK summer Conf., pp. 497-500, Jeju, Korea, June 2012.
  22. C. Hsu and C. Lin. "A comparison of methods for multiclass support vector machines." IEEE Trans. on Neural Networks, Vol. 13. No. 2, pp. 415-425, 2002. https://doi.org/10.1109/72.991427
  23. J. Milgram, M. Cheriet, and R. Sabourin. "One Against One" or "One Against All": Which One is Better for Handwriting Recognition with SVMs?." Tenth International Workshop on Frontiers in Handwriting Recognition. 2006.
  24. P. H. Dahl, J. H. Miller, D. H. Cato and R. K. Andrew, "Underwater Ambient Noise," Acoust. Today, Vol. 3. pp. 23-33, 2007. https://doi.org/10.1121/1.2961145
  25. M. Chitre, S. Kuselan and V. Pallayil, "Ambient noise imaging in warm shallow waters robust statistical algorithms and range estimation," J. Acoust, Soc. Am., Vol. 132, no. 2, pp. 838-847, 2012. https://doi.org/10.1121/1.4733553
  26. B. K. Choi, B. C. Kim, C. Kim, and B. N. Kim, "Analysis of Dependence on Wind Speed and Ship Traffic of Underwater Ambient Noise at Shallow Sea Surrounding the Korean Peninsula," J. Acoust. Soc. Korea, Vol. 22, No. 3, pp. 233-241, 2003.
  27. B. Friedlander and B. Porat, "The Modified Yule-Walker Method of ARMA Spectral Estimation," IEEE Trans. on Aero. Electron, Sys., Vol. 20, No. 2, pp. 158-173, 1984.
  28. P. P. Vaidyanathan, The Theory of Linear Prediction, Morgan & Claypool, 2008.