DOI QR코드

DOI QR Code

Retrieval Spectral Albedo using red and NIR band of SPOT/VGT

  • Lee, Chang Suk (Department of Spatial information Engineering, Pukyong National University) ;
  • Seo, Min Ji (Department of Spatial information Engineering, Pukyong National University) ;
  • Han, Kyung-Soo (Department of Spatial information Engineering, Pukyong National University)
  • Received : 2014.06.19
  • Accepted : 2014.06.24
  • Published : 2014.06.30

Abstract

Albedo is one of the critical parameters for understanding global climate change and energy/water balance. In this study, we used red and NIR reflectance from Satellite Pour I'Obervation de la Terre (SPOT)/Vegetation (VGT) S1 product. The product is preprocessed for users that they are atmospherically corrected using Simple Method Atmospheric Correction (SMAC) by Vision on Technology (VITO) for calculating broadband albedo. Roujean's Bi-directional Reflectance Distribution Function (BRDF) model is a semi-empirical method used for BRDF angular integration and inversion. Each kernel of Roujean's model was multi integrated by angle components (i.e., viewing zenith, solar zenith, and relative azimuth angle). Black-sky hemispherical function is integrated by observational angle; whereas, white-sky hemispherical efficient is integrated by incident angle. Estimated spectral albedo of red ($0.61{\sim}0.68{\mu}m$, B2) and near infrared ($0.79{\sim}0.89{\mu}m$, B3) have a good agreement with MODIS albedo products.

Keywords

References

  1. Avissar, R., and M.M. Verstraete, 1990. The representation of continental surface processes in atmospheric models, Reviews of Geophysics, 28(1): 35-52. https://doi.org/10.1029/RG028i001p00035
  2. Dickinson, R.E., 1995. Land processes in climate models, Remote Sensing of Environment, 51(1): 27-38. https://doi.org/10.1016/0034-4257(94)00062-R
  3. GCOS, 2003. Second report on the adequacy of the global observing systems for climate, Technical Report GCOS-82, WMO/TD No. 1143, World Meteorological Organization.
  4. GCOS, 2006. Systematic observation requirements for satellite-based products for climate: Supplemental details to the satellite-based component of the implementation plan for the global observing system for climate in support of the UNFCCC, Technical Report GCOS-107, WMO/TD No 1338, World Meteorological Organization.
  5. Govaers Y.M., A. Lattanzio, M. Taberner, and B. Pinty, Generating global surface albedo products from multiple geostationary satellites, Remote Sensing of Environment, 112: 2804-2816.
  6. Henderson-Sellers, A. and M.F. Wilson, 1983. Surface albedo data for climatic modelling, Reviews of Geophysics, 21(8): 1743-1778. https://doi.org/10.1029/RG021i008p01743
  7. Kim, S.I., K.-S. Han, and K.-J. Pi, 2011. The Trend Analysis of Vegetation Change Applied to Unsupervised Classification Over East Asia: Using the NDVI 10-day data in 1999-2010, Journal of Korean Society for Geospatial Information System, 19(4): 153-159 (in Korean with English abstract).
  8. Lee, C.S., and K.S. Han, 2013. Comparison of Two Semi-Empirical BRDF algorithms using SPOT/VGT, Korean Journal of Remote Sensing, 29(3): 307-314. https://doi.org/10.7780/kjrs.2013.29.3.3
  9. Liang, S., H. Fang, M. Chen, C.J. Shuey, C. Walthall, C. Daughtry, J. Morisette, C. Schaaf, and A. Strahler, 2002. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results, Remote Sensing of Environment, 83(1): 149-162. https://doi.org/10.1016/S0034-4257(02)00092-5
  10. Lucht, W., C.B. Schaaf, and A.H. Strahler, 2000. An algorithm for the retrieval of albedo from space using semiempirical BRDF models, IEEE Transactions on Geoscience and Remote Sensing, 38(2): 977-998. https://doi.org/10.1109/36.841980
  11. Rahman, H. and G. Dedieu, 1994. SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. International Journal of Remote Sensing, 15(1): 123-143. https://doi.org/10.1080/01431169408954055
  12. Roujean, J.L., M. Leroy, and P.Y. Deschamps, 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data, Journal of Geophysical Research, 97(D18): 20455-20468. https://doi.org/10.1029/92JD01411
  13. Park, E.-B., K.-S. Han, C.-S. Lee, and K.-J. Pi, 2012. The Tendency Analysis of Albedo by Land Cover Over Northeast Asia Using MODIS 16-Day Composited Albedo data, Korean Journal of Remote Sensing, 28(5): 501-508 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.5.3
  14. Pi, K.-J., K.-S. Han, and S.-J. Park, 2009. A Comparative Analysis of Land Cover Changes Among Different Source Regions of Dust Emission in East Asia: Gobi Desert and Manchuria, Korean Journal of Remote Sensing, 25(2): 175-184 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2009.25.2.175
  15. Schaaf, C.B., 2009. ALBEDO albedo and reflectance anisotropy, Global Terrestrial Observing System, Rome.
  16. Strahler, A.H., J.P. Muller, W. Lucht, C.B. Schaaf, T. Tsang, F. Gao, L. Xiaowen, J.P. Muller, and M.J. Barnsley, 1999. MODIS BRDF/albedo product: algorithm theoretical basis document version 5.0., MODIS documentation.
  17. Valiente, J.A., M. Nunez, E. Lopez-Baeza, and J.F. Moreno, 1995. Narrow-band to broad-band conversion for Meteosat-visiible channel and broad-band albedo using both AVHRR-1 and-2 channels, International Journal of Remote Sensing, 16(6): 1147-1166. https://doi.org/10.1080/01431169508954468
  18. van Leeuwen, W.J., and J.L. Roujean, 2002. Land surface albedo from the synergistic use of polar (EPS) and geo-stationary (MSG) observing systems: An assessment of physical uncertainties, Remote Sensing of Environment, 81(2): 273-289. https://doi.org/10.1016/S0034-4257(02)00005-6
  19. Verbeiren, S., 2009. GMES Space Component Data Access(GSC-DA) Instrument/Product specifications, VITO, p42.
  20. Wanner, W., X. Li, and A.H. Strahler, 1995. On the derivation of kernels for kernel driven models of bidirectional reflectance. Journal of Geophysical Research: Atmospheres (1984-2012), 100(D10): 21077-21089. https://doi.org/10.1029/95JD02371

Cited by

  1. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica vol.8, pp.12, 2016, https://doi.org/10.3390/rs8120981