DOI QR코드

DOI QR Code

Nonlinear vibration of thin circular sector cylinder: An analytical approach

  • Pakar, Iman (Young Researchers and Elites Club, Mashhad Branch, Islamic Azad University) ;
  • Bayat, Mahmoud (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University) ;
  • Bayat, Mahdi (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University)
  • 투고 : 2014.03.28
  • 심사 : 2014.06.09
  • 발행 : 2014.07.25

초록

In this paper, we try to prepare an accurate analytical solution for solving nonlinear vibration of thin circular sector cylinder. A new approximate solution called variational approach is presented and correctly applied to the governing equation of thin circular sector cylinder. The effect of important parameters on the response of the problem is considered. Some comparisons have been presented between the numerical solution and the present approach. The results show an excellent agreement between these methods. It has been illustrated that the variational approach can be a useful method to solve nonlinear problems by considering the effects of important parameters.

키워드

참고문헌

  1. Alicia, C., Hueso, J.L., Martinez, E. and Torregros, J.R. (2010), "Iterative methods for use with nonlinear discrete algebraic models", Math. Comput. Model., 52(7-8), 1251-1257. https://doi.org/10.1016/j.mcm.2010.02.028
  2. Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by Hamiltonian Approach", J. Vibroeng., 13(4), 654-661.
  3. Bayat, M. and Pakar, I. (2011b), "Application of He's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
  4. Bayat, M. and Pakar, I. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., Int. J., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  5. Bayat, M. and Pakar, I. (2013a), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
  6. Bayat, M. and Pakar, I. (2013b), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  7. Bayat, M., Pakar, I. and Shahidi, M. (2011), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
  8. Bayat, M., Pakar, I. and Domaiirry, G. (2012), "Recent developments of Some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Latin Am. J. Solid. Struct., 9(2), 145-234.
  9. Bayat, M., Pakar, I. and Bayat, M. (2013), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., Int. J., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
  10. Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: An analytical approach", Mech. Mach. Theory, 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
  11. Bayat, M., Pakar, I. and Cveticanin, L. (2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian Approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
  12. Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Latin Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
  13. Dehghan, M. and Tatari, M. (2008), "Identifying an unknown function in a parabolic equation with over specified data via He's variational iteration method", Chaos Solitons Fractals, 36(1), 157-166. https://doi.org/10.1016/j.chaos.2006.06.023
  14. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillators", Mech. Res. Communications, 29(2), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  15. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Solitons Fractals, 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  16. He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlinear Sci. Numer. Simulation, 9(2), 211-212.
  17. Kuo, B.L. and Lo, C.Y. (2009), "Application of the differential transformation method to the solution of a damped system with high nonlinearity", Nonlinear Anal., 70(4), 1732-1737. https://doi.org/10.1016/j.na.2008.02.056
  18. Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Current Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
  19. Odibat, Z., Momani, S. and Erturk, V.S. (2008), "Generalized differential transform method: application to differential equations of fractional order", Appl. Math. Comput., 197(2) , 467-477. https://doi.org/10.1016/j.amc.2007.07.068
  20. Pakar, I. and Bayat, M. (2011), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
  21. Pakar, I. and Bayat, M. (2012), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
  22. Pakar, I., Bayat, M. and Bayat, M. (2012), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
  23. Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler-Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
  24. Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., Int. J., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  25. Shaban, M., Ganji, D.D. and Alipour, A.A. (2010), "Nonlinear fluctuation, frequency and stability analyses in free vibration of circular sector oscillation systems", Current Appl. Phys., 10(5), 1267-1285. https://doi.org/10.1016/j.cap.2010.03.005
  26. Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl. 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
  27. Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
  28. Xu, L. (2008), "Variational approach to solution of nonlinear dispersive K(m, n) equation", Chaos Solitons Fractals, 37(1), 137-143. https://doi.org/10.1016/j.chaos.2006.08.016
  29. Xu, N. and Zhang, A. (2009), "Variational approachnext term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463. https://doi.org/10.1016/j.camwa.2009.03.035
  30. Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlinear Sci. Numer. Simul., 10(10), 1361-1368.

피인용 문헌

  1. A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
  2. High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
  3. Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
  4. Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
  5. Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.703