References
- Alicia, C., Hueso, J.L., Martinez, E. and Torregros, J.R. (2010), "Iterative methods for use with nonlinear discrete algebraic models", Math. Comput. Model., 52(7-8), 1251-1257. https://doi.org/10.1016/j.mcm.2010.02.028
- Andrianov, I.V., Awrejcewicz, J. and Manevitch, L.I. (2004), Asymptotical Mechanics of Thin-Walled Structures, Springers-Verlag Berlin, Heidelberg, Germany.
- Agirseven, D. and Ozis, T. (2010) "An analytical study for Fisher type equations by using homotopy perturbation method", Comput. Math. Appl., 60(3), 602-609. https://doi.org/10.1016/j.camwa.2010.05.006
- Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by Hamiltonian Approach", J. Vibroeng., 13(4), 654-661.
- Bayat, M. and Pakar, I. (2011b), "Application of He's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
- Bayat, M. and Abdollahzade, G. (2011c), "Analysis of the steel braced frames equipped with ADAS devices under the far field records", Latin Am. J. Solid. Struct., 8(2), 163-181. https://doi.org/10.1590/S1679-78252011000200004
- Bayat, M. and Abdollahzadeh, G.R. (2011d), "On the effect of the near field records on the steel braced frames equipped with energy dissipating devices", Latin Am. J. Solid. Struct., 8(4), 429-443. https://doi.org/10.1590/S1679-78252011000400004
- Bayat, M. and Pakar, I. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., Int. J., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Bayat, M. and Pakar, I. (2013a), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
- Bayat, M. and Pakar, I. (2013b), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
- Bayat, M., Pakar, I. and Shahidi, M. (2011), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
- Bayat, M., Pakar, I. and Domaiirry, G. (2012), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Latin Am. J. Solid. Struct., 9(2), 145-234 .
- Bayat, M., Pakar, I. and Bayat, M. (2013), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., Int. J., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
- Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities : An analytical approach", Mechi. Mach. Theory, 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
- Bayat, M., Pakar, I. and Cveticanin, L. (2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian Approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
- Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Latin Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
- Dehghan, M. and Tatari, M. (2008), "Identifying an unknown function in a parabolic equation with over specified data via He's variational iteration method", Chaos Solitons Fractals, 36(1), 157-166. https://doi.org/10.1016/j.chaos.2006.06.023
- Filobello-Nino, U., Vazquez-Leal, H., Castaneda-Sheissa, R., Yildirim, A., Hernandez-Martinez, L., Pereyra-Diaz, D., Perez-Sesma, A. and Hoyos-Reyes, C. (2012), "An approximate solution of blasius equation by using HPM method", Asian J. Math. Statistics, 5(2), 50-59. https://doi.org/10.3923/ajms.2012.50.59
- Ganji, D.D. (2006), "The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer", Phys. Letters A, 355(4-5), 337-341. https://doi.org/10.1016/j.physleta.2006.02.056
- He, J.H. (1999a), "Variational iteration method: A kind of nonlinear analytical technique: Some examples," Int. J. Non-Linear Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
- He, J.H. (1999b), "Homotopy perturbation technique", Comput. Method. Appl. Mech. Eng., 178(3-4), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillators", Mech. Res. Communications, 29(2), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Solitons Fractals, 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
- He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlinear Sci. Numer. Simulation, 9(2), 211-212.
- Kuo, B.L. and Lo, C.Y. (2009), "Application of the differential transformation method to the solution of a damped system with high nonlinearity", Nonlinear Anal., 70(4), 1732-1737. https://doi.org/10.1016/j.na.2008.02.056
- Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Current Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
- Odibat, Z., Momani, S. and Suat Erturk, V. (2008), "Generalized differential transform method: Application to differential equations of fractional order", Appl. Math. Comput., 197(2) , 467-477. https://doi.org/10.1016/j.amc.2007.07.068
- Pakar, I. and Bayat, M. (2011), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
- Pakar, I. and Bayat, M. (2012), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
- Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler-Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
- Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
- Pakar, I., Bayat, M. and Bayat, M. (2012), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
- Shaban, M., Ganji, D.D. and Alipour, A.A. (2010), "Nonlinear fluctuation, frequency and stability analyses in free vibration of circular sector oscillation systems", Current Appl. Physi., 10(5), 1267-1285. https://doi.org/10.1016/j.cap.2010.03.005
- Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl. 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
- Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
- Xu, L. (2008), "Variational approach to solution of nonlinear dispersive K(m, n) equation", Chaos Solitons Fractals, 37(1), 137-143. https://doi.org/10.1016/j.chaos.2006.08.016
- Xu, N. and Zhang, A. (2009), "Variational approachnext term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463. https://doi.org/10.1016/j.camwa.2009.03.035
- Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlinear Sci. Numer. Simul., 10(10), 1361-1368.
Cited by
- High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
- Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
- A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
- Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
- Supersonic nonlinear flutter of cross-ply laminated shallow shells pp.2041-3025, 2019, https://doi.org/10.1177/0954410019827461
- Optimum Design of Infinite Perforated Orthotropic and Isotropic Plates vol.8, pp.4, 2014, https://doi.org/10.3390/math8040569