References
- Alibakhshi, R. (2012), "The effect of anisotropy on free vibration of rectangular composite plates with patch mass", Int. J. Eng. Transactions B: Applications, 25(3), 223-232.
- Alibeigloo, A. and Kari, M.R. (2009), "Forced vibration analysis of anti-symmetric laminated rectangular plates with distributed patch mass using third order shear deformation theory", Thin-Wall. Struct., 47(6-7), 653-660. https://doi.org/10.1016/j.tws.2008.11.006
- Alibeigloo, A., Shakeri, M. and Kari, M.R. (2008), "Free vibration analysis of antisymmetric laminated rectangular plates with distributed patch mass using third-order shear deformation theory", J. Ocean Eng., 35(2), 183-190. https://doi.org/10.1016/j.oceaneng.2007.09.002
- Ambartsumian, S.A. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5, 69-77.
- Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates", Int. J. Solid. Struct., 14(6), 465-473. https://doi.org/10.1016/0020-7683(78)90011-2
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Kim, S.E., Thai, H.T. and Lee, J. (2009), "A two variable refined plate theory for laminated composite plates", Compos. Struct., 89(2), 197-205. https://doi.org/10.1016/j.compstruct.2008.07.017
- Leissa, A.W. (1969), "Vibration of plates. NASA, SP-160, O/ce of Technology Utilization", NASA, Washington, D.C., USA.
- Meirovitch, L. (2001), Fundamentals of Vibrations, McGraw Hill International Edition, Singapore.
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38.
- Moradi, S. and Mansouri, M.H. (2012), "Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature", Steel Compos. Struct., Int. J., 12(2), 129-147. https://doi.org/10.12989/scs.2012.12.2.129
- Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 629-640. https://doi.org/10.1007/s11029-013-9379-6
- Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
- Rashidi, M.M., Shooshtari, A. and Anwar Beg, O. (2012) "Homotopy perturbation study of nonlinear vibration of Von Karman rectangular plates", Comput. Struct., 106-107, 46-55. https://doi.org/10.1016/j.compstruc.2012.04.004
- Reddy, J.N. (1979), "Free vibration of antisymmetric angle-ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 66(4), 565-576. https://doi.org/10.1016/0022-460X(79)90700-4
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1999), Theory and Analysis of Elastic Plates, Taylor & Francis, Philadelphia, PA, USA.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12(2), 69-77.
-
Shankara, C.A. and Iyengar, N.G. (1996), "A
$C^{\circ}$ element for the free vibration analysis of laminated composite plates", J. Sound Vib., 191(5), 721-738. https://doi.org/10.1006/jsvi.1996.0152 - Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146. https://doi.org/10.2514/2.1622
- Shimpi, R.P. and Patel, H.G. (2006a), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43(22), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
- Shimpi, R.P. and Patel, H.G. (2006b), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4-5), 979-999. https://doi.org/10.1016/j.jsv.2006.03.030
- Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), "Natural frequencies of composite plates with random material properties using higher-order shear deformation theory", Int. J. Mech. Sci., 43(10), 2193-2214. https://doi.org/10.1016/S0020-7403(01)00046-7
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-200. https://doi.org/10.1007/BF01176650
- Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25(1-4), 165-171. https://doi.org/10.1016/0263-8223(93)90162-J
- Szilard, R. (1974), Theory and Analysis of Plates, Classical and Numerical Method, Prentice-Hall, Englewood Clils, NJ, USA.
- Timoshenko, S.P. (1955), Vibration Problems in Engineering, Van Nostrand, Princeton, NJ, USA.
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
Cited by
- Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory vol.19, pp.1, 2015, https://doi.org/10.12989/scs.2015.19.1.093
- A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1215
- A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.227
- Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
- Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.245
- Experimental observation and energy based analytical investigation of matrix cracking distribution pattern in angle-ply laminates vol.92, 2017, https://doi.org/10.1016/j.tafmec.2017.06.007
- Static and dynamic behavior of FGM plate using a new first shear deformation plate theory vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.127
- Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions vol.15, pp.3, 2015, https://doi.org/10.12989/cac.2015.15.3.337
- On the bending and stability of nanowire using various HSDTs vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.177
- Dynamic behavior of FGM beam using a new first shear deformation theory vol.10, pp.2, 2016, https://doi.org/10.12989/eas.2016.10.2.451
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations vol.40, 2015, https://doi.org/10.1016/j.ast.2014.11.005
- On vibration behavior of rotating functionally graded double-tapered beam with the effect of porosities vol.230, pp.10, 2016, https://doi.org/10.1177/0954410015619647
- Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
- A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.743
- Free vibration analysis of a rotating non-uniform functionally graded beam vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1279
- Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method vol.30, pp.6, 2016, https://doi.org/10.1007/s12206-016-0506-x
- An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
- Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
- On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
- A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.223
- Influence of the porosities on the free vibration of FGM beams vol.21, pp.3, 2015, https://doi.org/10.12989/was.2015.21.3.273
- A new higher order shear and normal deformation theory for functionally graded beams vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.793
- A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.257
- An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
- Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.443
- A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
- Nonlinear Flexural Analysis of Laminated Composite Panel Under Hygro-Thermo-Mechanical Loading — A Micromechanical Approach vol.13, pp.03, 2016, https://doi.org/10.1142/S0219876216500158
- Analytical solution for bending analysis of functionally graded beam vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.829
- Thermal Buckling Response of Functionally Graded Plates with Clamped Boundary Conditions vol.38, pp.6, 2015, https://doi.org/10.1080/01495739.2015.1015900
- A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
- A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel vol.29, pp.1, 2016, https://doi.org/10.1016/j.cja.2015.12.007
- An analytical method for free vibration analysis of functionally graded sandwich beams vol.23, pp.1, 2016, https://doi.org/10.12989/was.2016.23.1.059
- Dynamic behavior of piezoelectric composite beams under moving loads vol.50, pp.7, 2016, https://doi.org/10.1177/0021998315583319
- Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
- Postbuckling analysis of laminated composite shells under shear loads vol.21, pp.2, 2016, https://doi.org/10.12989/scs.2016.21.2.373
- Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method vol.132, 2015, https://doi.org/10.1016/j.compstruct.2015.05.012
- Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
- Flexure of power law governed functionally graded plates using ABAQUS UMAT vol.46, 2015, https://doi.org/10.1016/j.ast.2015.06.021
- Research on mechanical properties of a polymer membrane with a void based on the finite deformation theory vol.15, pp.5, 2015, https://doi.org/10.1515/epoly-2015-0086
- A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
- A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position vol.8, pp.3, 2015, https://doi.org/10.12989/gae.2015.8.3.305
- A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
- Interfacial stress analysis of functionally graded beams strengthened with a bonded hygrothermal aged composite plate vol.24, pp.2, 2017, https://doi.org/10.1080/09276440.2016.1196333
- On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.1063
- A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
- On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
- A new higher-order shear and normal deformation theory for functionally graded sandwich beams vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.521
- Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1347
- Realization of MOEMS pressure sensor using mach zehnder interferometer vol.29, pp.9, 2015, https://doi.org/10.1007/s12206-015-0829-z
- Investigation of the effects of viscous damping mechanisms on structural characteristics in coupled shear walls vol.116, 2016, https://doi.org/10.1016/j.engstruct.2016.02.031
- Electro-Magneto-Elastic Response of Laminated Composite Plate: A Finite Element Approach vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0256-6
- Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position vol.38, pp.1, 2016, https://doi.org/10.1007/s40430-015-0354-0
- Effect of fiber tension on the deformation of a carbon composite plate for space radio telescopes vol.45, 2015, https://doi.org/10.1016/j.ast.2015.04.019
- Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory vol.18, pp.6, 2015, https://doi.org/10.12989/scs.2015.18.6.1493
- Determination of Optimum Process Parameters for Cutting Hole in a Randomly-oriented Glass Fiber Reinforced Epoxy Composite by Milling Process: Maximization of Surface Quality and Cut-hole Strength vol.24, pp.2, 2016, https://doi.org/10.1177/096739111602400201
- Determination of Optimum Process Parameters for Cutting Hole in a Randomly-oriented Glass Fiber Reinforced Epoxy Composite by Milling Process: Maximization of Surface Quality and Cut-hole Strength vol.24, pp.2, 2016, https://doi.org/10.1177/096739111602400201
- A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2014, https://doi.org/10.12989/gae.2017.12.1.009
- A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
- Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2014, https://doi.org/10.12989/sss.2017.19.3.289
- Displacement Analytical Solution of a Circular Hole in Layered Composite Materials considering Shear Stress Effect vol.26, pp.3, 2014, https://doi.org/10.1177/096369351702600303
- Free vibrations of laminated composite plates using a novel four variable refined plate theory vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.603
- Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory vol.15, pp.4, 2018, https://doi.org/10.12989/eas.2018.15.4.369
- Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure vol.7, pp.3, 2019, https://doi.org/10.12989/anr.2019.7.3.181
- Dynamic symmetrical mode III interface crack issues between unalike materials vol.8, pp.3, 2019, https://doi.org/10.1680/jemmr.16.00064
- Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory vol.24, pp.6, 2019, https://doi.org/10.12989/cac.2019.24.6.489
- A Novel Refined Shear Deformation Theory for the Buckling Analysis of Thick Isotropic and Orthotropic Plates on Two-Parameter Pasternak’s Foundations vol.20, pp.1, 2014, https://doi.org/10.1007/s11668-019-00713-y
- Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2014, https://doi.org/10.12989/scs.2021.40.3.355