DOI QR코드

DOI QR Code

A n-order four variable refined theory for bending and free vibration of functionally graded plates

  • Djedid, I. Klouche (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benachour, Abdelkader (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Houari, Mohammed Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Ameur, Mohammed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie)
  • Received : 2013.08.19
  • Accepted : 2014.02.02
  • Published : 2014.07.25

Abstract

This paper presents a simple n-order four variable refined theory for the bending and vibration analyses of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

Keywords

References

  1. Abrate, S. (2006), "Free vibration buckling and static deflections of functionally graded plates", Compos. Sci. Technol., 66(14), 2383-2394. https://doi.org/10.1016/j.compscitech.2006.02.032
  2. Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stresses, 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665
  3. Batra, R.C. and Jin, J. (2005), "Natural frequencies of a functionally graded anisotropic rectangular plate", J. Sound Vib., 282(1), 509-516. https://doi.org/10.1016/j.jsv.2004.03.068
  4. Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for bending analysis of thick functionally graded rectangular plates based on higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3670. https://doi.org/10.1016/j.apm.2010.03.016
  5. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  6. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandwich Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  7. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  8. Chen, C.S., Fung, C.P. and Yu, S.Y. (2008), "The investigation on the vibration and stability of functionally graded plates", J. Reinf. Plast. Compos., 27(13), 1435-1447. https://doi.org/10.1177/0731684407086611
  9. Chen, C.S., Hsu, C.Y. and Tzou, G.J. (2009), "Vibration and stability of functionally graded plates based on a higher order deformation theory", J. Reinf. Plast. Compos., 28(10), 1215-1234. https://doi.org/10.1177/0731684408088884
  10. Chi, S.H. and Chung, Y.L. (2006a), "Mechanical behavior of functionally graded material plates under transverse load. Part I: Analysis", Int. J. Solid. Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
  11. Chi, S.H. and Chung, Y.L. (2006b), "Mechanical behavior of functionally graded material plates under transverse load. Part II: Numerical results", Int. J. Solid. Struct., 43(13), 3675-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010
  12. Curiel Sosa, J.L., Munoz, J.J., Pinho, S.T. and Anwar Beg, O. (2012), "(XFEM) Simulation of damage in laminates", Applied Sciences and Engineering (ECCOMAS 2012), (J. Eberhardsteiner et al. Eds.), Vienna, Austria, September.
  13. Curiel Sosa, J.L., Anwar Beg, O. and Liebana Murillo, J.M. (2013), "Finite element analysis of structural instability using a switching implicit-explicit technique", Int. J. Comp. Method. Eng. Sci. Mech., 14(5), 452-464. https://doi.org/10.1080/15502287.2013.784383
  14. Fahsi, B., Kaci, A., Tounsi, A. and Adda Bedia, E.A. (2012), "A four variable refined plate theory for nonlinear cylindrical bending analysis of functionally graded plates under thermomechanical loadings", J. Mech. Sci. Tech., 26(12), 4073-4079. https://doi.org/10.1007/s12206-012-0907-4
  15. Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A. and Adda Bedia, E.A. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struct., Int. J., 13(1), 91-107. https://doi.org/10.12989/scs.2012.13.1.091
  16. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9
  17. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011a), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007
  18. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011b), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002
  19. Houari, M.S.A., Benyoucef, S., Mechab, I., Tounsi, A. and Adda Bedia, E.A. (2011), "Two variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates", J. Therm. Stresses, 34(4), 315-334. https://doi.org/10.1080/01495739.2010.550806
  20. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B., 28(1-2), 1-4.
  21. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009a), "Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions", Int. J. Numer. Method. Eng., 79(1), 25-44. https://doi.org/10.1002/nme.2555
  22. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009b), "Exact solutions for free vibrations of functionally graded thick plates on elastic foundations", Mech. Adv. Mater. Struct., 16(8), 576-584. https://doi.org/10.1080/15376490903138888
  23. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
  24. Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87(4), 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002
  25. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach, 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
  26. Rashidi, M.M., Shooshtari, A. and Anwar Beg, O. (2012), "Homotopy perturbation study of nonlinear vibration of Von Karman rectangular plates", Comput. Struct., 106/107, 46-55. https://doi.org/10.1016/j.compstruc.2012.04.004
  27. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  28. Shahrjerdi, A., Bayat, M., Mustapha, F., Sapuan, S.M. and Zahari, R. (2010), "Second-order shear deformation theory to analyze stress distribution for solar functionally graded plates", Mech. Based Des. Struct Mach., 38(3), 348-361. https://doi.org/10.1080/15397731003744603
  29. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
  30. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, IOM Communications Ltd., London, UK.
  31. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of fgm plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  32. Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
  33. Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022
  34. Yahoobi, H. and Feraidoon, A. (2010), "Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load", World Appl. Sci. J., 10(3), 337-341. https://doi.org/10.3923/jas.2010.337.342
  35. Yaghoobi, H. and Torabi, M. (2013), "Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions", J. Therm. Stresses, 36(9), 869-894. https://doi.org/10.1080/01495739.2013.770356
  36. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
  37. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
  38. Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016

Cited by

  1. Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.425
  2. A new higher order shear and normal deformation theory for functionally graded beams vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.793
  3. A new simple shear and normal deformations theory for functionally graded beams vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.409
  4. An analytical method for free vibration analysis of functionally graded sandwich beams vol.23, pp.1, 2016, https://doi.org/10.12989/was.2016.23.1.059
  5. A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.257
  6. A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position vol.8, pp.3, 2015, https://doi.org/10.12989/gae.2015.8.3.305
  7. Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.443
  8. A n-order refined theory for bending and free vibration of functionally graded beams vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.923
  9. A new higher order shear deformation model for functionally graded beams vol.20, pp.5, 2016, https://doi.org/10.1007/s12205-015-0252-0
  10. On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.1063
  11. Static and dynamic behavior of FGM plate using a new first shear deformation plate theory vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.127
  12. Analysis of functionally graded beam using a new first-order shear deformation theory vol.57, pp.2, 2016, https://doi.org/10.12989/sem.2016.57.2.315
  13. A refined exponential shear deformation theory for free vibration of FGM beam with porosities vol.9, pp.3, 2015, https://doi.org/10.12989/gae.2015.9.3.361
  14. Dynamic behavior of FGM beam using a new first shear deformation theory vol.10, pp.2, 2016, https://doi.org/10.12989/eas.2016.10.2.451
  15. Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1347
  16. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1143
  17. A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates vol.18, pp.1, 2015, https://doi.org/10.12989/scs.2015.18.1.235
  18. Thermal buckling of functionally graded plates using a n-order four variable refined theory vol.4, pp.1, 2015, https://doi.org/10.12989/amr.2015.4.1.31
  19. Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.291
  20. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  21. Static bending and free vibration of FGM beam using an exponential shear deformation theory vol.4, pp.1, 2015, https://doi.org/10.12989/csm.2015.4.1.099
  22. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  23. Thermal Buckling Response of Functionally Graded Plates with Clamped Boundary Conditions vol.38, pp.6, 2015, https://doi.org/10.1080/01495739.2015.1015900
  24. Analyse of the behavior of functionally graded beams based on neutral surface position vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.703
  25. A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position vol.63, pp.5, 2014, https://doi.org/10.12989/sem.2017.63.5.683
  26. Quasi-3D Refined Theory for Functionally Graded Porous Plates: Vibration Analysis vol.24, pp.3, 2014, https://doi.org/10.1134/s1029959921030036
  27. A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers vol.79, pp.3, 2014, https://doi.org/10.12989/sem.2021.79.3.279