DOI QR코드

DOI QR Code

Upgrading of Iron from Waste Copper Slag by A Physico-chemical Separation Process

Physico-chemical 분리 공정에 의한 폐동슬래그로부터 철의 품위향상

  • Lee, Kwang-Seok (Mineral Utilizarion Convergence Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jo, Seul-Ki (Mineral Utilizarion Convergence Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Shin, Doyun (Mineral Utilizarion Convergence Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jeong, Soo-Bock (Mineral Utilizarion Convergence Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jae-Chun (Mineral Utilizarion Convergence Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Byung-Su (Mineral Utilizarion Convergence Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이광석 (한국지질자원연구원 광물자원연구본부 희유자원융합연구센터) ;
  • 조슬기 (한국지질자원연구원 광물자원연구본부 희유자원융합연구센터) ;
  • 신도연 (한국지질자원연구원 광물자원연구본부 희유자원융합연구센터) ;
  • 정수복 (한국지질자원연구원 광물자원연구본부 희유자원융합연구센터) ;
  • 이재천 (한국지질자원연구원 광물자원연구본부 희유자원융합연구센터) ;
  • 김병수 (한국지질자원연구원 광물자원연구본부 희유자원융합연구센터)
  • Received : 2014.04.03
  • Accepted : 2014.05.27
  • Published : 2014.06.30

Abstract

A large amount of waste copper slag containing about 35 ~ 45% iron has been generated and discarded every year from pyrometallurgical processes for producing copper from copper concentrate. Thus, recovery of iron from the waste copper slag is of great interest for comprehensive use of mineral resource and reduction of environment problems. In this study, a physico-chemical separation process for upgrading iron from the waste copper slag discharged as an industrial waste has been developed. The process first crushes the waste copper slag below 1 mm (first crushing step), followed by carbon reduction at $1225^{\circ}C$ for 90 min (carbon reduction step). And then, resulting material is again crushed to $-104{\mu}m$ (second crushing step), followed by wet magnetic separation (wet magnetic separation step). Using the developed process, a magnetic product containing more than 66 wt.% iron was obtained from the magnetic separation under a magnetic field strength of 0.2 T for the waste copper slag treated by the reduction reaction. At the same conditions, the percentage recovery of iron was over 72%. The iron rich magnetic product obtained should be used as a iron resource for making pig iron.

동정광으로 동을 제련하는 동제련소에서는 대략 35-45%정도 철을 함유한 폐동슬래그가 다량 배출되어 대부분 폐기처분되고 있다. 따라서 폐동슬래그로부터 철을 회수하여 철을 자원화하는 것은 자원의 효율적인 활용측면과 환경문제를 감소하는 측면에서 관심이 크게 증대되고 있다. 본 연구에서는 동제련소에서 발생되는 다량의 철 성분이 포함된 폐동슬래그로부터 철의 품위향상을 위한 physico-chemical 분리 공정이 개발되었다. 개발된 공정은 먼저 폐동슬래그를 1 mm이하로 파쇄하는 공정(1차 파쇄공정)과, 이어서 $1225^{\circ}C$에서 90분 동안 탄소 환원하는 공정(탄소 환원공정), 그리고 환원된 슬래그로부터 $104{\mu}m$ 이하로 2차 파 분쇄하는 공정(2차 파쇄공정)과, 이어서 철 농축물을 분리 회수하는 습식자력선별 공정(습식 자력선별공정)으로 구성된다. 개발된 공정을 이용하여 환원된 폐동슬래그를 0.2 T의 자력세기에서 습식자력선별 함으로써 철 품위가 66 wt.%인 철 농축물을 얻었고, 같은 조건에서 철 회수율은 72%이었다. 따라서 분리 회수된 철 농축물은 철 원료로 사용될 수 있을 것으로 판단된다.

Keywords

References

  1. Bipra Gorai, R.K. Jana, Premchand, 2003: Characteristics and utilisation of copper slag-a review, Resourcesm Conservation and Recycling 39, pp. 299-313. https://doi.org/10.1016/S0921-3449(02)00171-4
  2. Korea Zinc Co., Ltd., 2012. Onsan Refinery, Ulju-gun, Ulsan, Korea, Private Communication (May).
  3. LS-Nikko copper inc., 2012. Ulju-gun, Ulsan, Korea, Private Communication (September).
  4. Huiting Shen, E. Forssberg, 2003: An overview of recovery of metals from slag, Waste Managment, 23, pp. 933-949. https://doi.org/10.1016/S0956-053X(02)00164-2
  5. Norrgran, D., Wernham, J., 1991: Recycling and secondary recovery applications using an eddy-current separator. Miner. Metall. Process. 11, pp. 184-187.
  6. Yucel, O., Addemir, O., Tekin, A., Nizamoglu, S., 1992: Recovery of cobalt from copper slags, Miner. Process. Extr. Metall. Rev. 10(1), pp. 93-99.
  7. Veasey, T., 1997: An overview of metals recycling by phisical separation methods. Proc. Inst. Mech. Eng. E J. Process Mech. Eng., 211(1), pp. 61-64. https://doi.org/10.1243/0954408971529557
  8. Yucel,O., Sahin, F., Sirin, B., Addemir, O., 1999: A reduction study of copper slag in DC arc furnace. Scand. J. Metall. 28(3), pp. 93-99.
  9. Ziyadanogullari, B., 2000: Recovery of copper and cobalt from concentrate and converter slag. Sep. Sci. Technol. 35(12), pp 1963-1971. https://doi.org/10.1081/SS-100100630
  10. Banza, A., Gock, E., kongolo, K., 2002: Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction. Hydrometallurgy 67, pp 63-69. https://doi.org/10.1016/S0304-386X(02)00138-X
  11. Agrawal, A., Sahoo, K.L., Ghosh, S., Pandey, B.D., 2007: United states patent 2007/0283785 A1.
  12. Busolic, D., Parada, F., Parra, R., Sanchez, M., Palacios, J., Hino, M., 2011: Recovery of iron from copper flash smelting slags. Miner. Process. Extr. Metall. (Trans. Inst. Min. Metall. C) 120(1), pp. 32-36. https://doi.org/10.1179/037195510X12772935654945
  13. Gyurov, S., Kostova, Y., Klitcheva, G., Ilinkina, A., 2011: Themal decomposition of pyro-metallurgical copper slag by oxidation in synthetic air. Waste Manag. Res. 29(2), pp. 157-164. https://doi.org/10.1177/0734242X10379495
  14. N. Moon, M. Hino, Y. Lee, K. Itagaki, 1998: Metallurgical Review of MMIJ 15, pp. 38-62.