DOI QR코드

DOI QR Code

Evaluation of Shrinkage of Heavyweight Magnetite Concrete with Fly Ash

플라이 애쉬 치환율에 따른 중량 자철석 콘크리트의 건조수축 평가

  • Mun, Jae-Sung (Department of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Department of Plant.Architectural Engineering, Kyonggi University) ;
  • Lee, Hyun-Ho (Department of Architecture and Fire Administration, Dongyang University) ;
  • Kim, Sang-Chel (Department of Civil Engineering, Hanseo University)
  • 문재성 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과) ;
  • 이현호 (동양대학교 건축소방행정학과) ;
  • 김상철 (한서대학교 토목공학과)
  • Received : 2014.06.18
  • Accepted : 2014.06.28
  • Published : 2014.06.30

Abstract

The objective of this study is to examine the drying shinkage and autogenuous shrinkage strains of heavyweight magnetite concrete. As a main parameters, cement was partially replaced by fly ash (FA) from 5% to 35%. The measured shrinkage strains were compared with predictions obtained from CEB-FIP equations and Yang et al.'s model. Test results showed that the magnitite of the autogenous and total shrinkage strains of heavyweight concrete slightly increased as the amount of fly ash increases up to 15%, beyond which the strains tended to decrease. The CEB-FIP equations considerably underestimated the shrinkage behavior of heavyweight concrete, indicating that this trend was more notable with the age. On the other hand, Yang et al.'s model predicted accurately the shrinkage of heavyweight concrete.

이 연구의 목적은 중량 자철석 콘크리트의 건조수축 및 자기건조수축의 평가이다. 이를 위한 주요변수는 결합재 대비 플라이애쉬의 치환률 5~35% 총 5배합이 수행되었다. 측정된 건조수축 변형률은 CEB-FIP와 Yang et al.의 제안모델과 비교 분석하였다. 실험결과, 건조수축 변형률 및 자기 건조수축 변형률은 플라이애쉬의 치환율이 15% 이상에서 그 치환율이 증가함에 따라 감소하였다. CEB-FIP 제안모델과 실험값의 비교는 CEB-FIP의 예측값이 약 1.2배 이상 높게 나타났으며, 이러한 경향은 재령이 증가함에 따라 현저하였다. 반면, Yang et al.의 모델은 자철석 중량콘크리트의 건조수축 변형률을 잘 예측하였다.

Keywords

References

  1. ACI Committee 304.3R-96. (1997), Heavyweight Concrete : Measuring, Mixing, Transporting, and Placing, ACI Manual of Concrete, 8.
  2. Choi, H.J., Choi, O.C., Choi, K.K., and Hwang, Y.J. (2012), A Prediction model of shrinkage cracking of steel fiber reinforced concrete, Journal of Architectural Institure of Korea, 28(6), 59-66.
  3. Comite Euro-International du Beton (CEB-FIP) (1999), Structural Concrete : Textbook on Behaviour, Design and Performance, International Federation for Structural Concrete (Fib), 224.
  4. Davis, H.S., Browne, F.L., and Witter, H.C. (1956)., Properties of high-density concrete made with iron aggregates, ACI Journal, 27(7), 705-726.
  5. Katharine Mather (1972), High Strength, High Density Concrete, ACI Journal(special Publication), 34(8), 1587-1596.
  6. Korea Industrial Standard (2006), Koean Strandards Information Center.
  7. Ojdrovic, R.P. and Zarghamee, M.S. (1996), Concrete Creep and Shrinkage Prediction from Short-Term Tests, ACI Materials Journal, 93(2), 169-177.
  8. Tarr, S.M, and Farny, J.A. (2008), A concrete floor on ground. 4 th ed, Portland Cement Association, 55-76.
  9. Witte, L.P. and Backstorm, J.E. (1954), Properties of heavy concrete made with baryte aggregates, ACI Journal, 51(6), 65-88.
  10. Yang, K.H., Mun, J.S., and Shim, H.J. (2013), Shrinkage of heavyweight magnetite concrete with and without fly ash, construction and Building Materials, 47, 56-65. https://doi.org/10.1016/j.conbuildmat.2013.05.034