신생아기의 유전성대사이상질환의 체계적 접근방법

Systematic Approach for the Diagnosis of IEM in the Neonatal Period

  • 이홍진 (한림대학교 의과대학 소아청소년과학교실)
  • 발행 : 2014.06.30

초록

Recent advances in the diagnosis and treatment of inborn errors of metabolism have improved substantially the prognosis of many of these diseases, if diagnosed early enough before irreversible damage occurs. This makes it essential that the practicing pediatrician, especially neonatologists be familliar with the clinical presentations and systematic approaches of these disorders. Characteristic clinical presentations, methods of systematic approach and typing of various disorders is discussed in this review. The signs of neurological dysfunctions of many IEMs manifesting in the neonatal period is very nonspecific, such as poor feeding, poor sucking, apnea or tachypnea, vomiting, hypertonia, hypotonia, seizure, letharginess, consciousness change and coma. Many other non-metabolic severe disorders of neonatal period such as neonatal sepsis and intracerebral hemorrhage share these nonspecific symptoms. Hyperammonemia, metabolic acidosis, ketosis and hyperlatic acidemia are observed in many of these conditions but there are exceptions in which conditions all basal laboratory tests are normal, such as NKH, sulfite oxidase deficiency and peroxisomal disorders. According to the results of basal laboratory tests, IEMs in the neonatal period can be categorized in to 6 types. Grouping of IEMs into 6 types will make confirmatory tests and early emergency treatment more efficient.

키워드

참고문헌

  1. Saudubray JM, Desguerre I, Sedel F, Charpentier C: A clinical approach to inherited metabolic disorders. In Fernandes J, Saudubray JM, van den Berghe G, Walter J, eds. Inborn metabolic Diseases:Diagnosis and Treatment, 4th edn. Berlin: Springer-Verlag, 2006.
  2. Burton BK. Nadler HL. Clinical diagnosis of inborn errors of metabolism in the neonatal period. Pediatrics 1978;61:398-405. https://doi.org/10.1542/peds.61.3.398
  3. Goodman SI. Inherited metabolic disease in the newborn: approach to diagnosis and treatment. Enzyme 1987;38:76-9.
  4. Tada K, Kure S. Non-ketotic hyperglycinaemia: molecular lesion, diagnosis and pathophysiology. J Inherit Metab Dis 1993;16:691-703. https://doi.org/10.1007/BF00711901
  5. Chalmers PT, Lawson AH. Organic acids in man, Chapman and hall, 1982, Vol I.
  6. Di mauro S, Bonilla E, Zeviani M, Servidei S, De Vivo DC, Schon EA. Mitochondrial myopathies. J Inherit Metab Dis 1987;10(suppl 1):113-28. https://doi.org/10.1007/BF01812852
  7. Braverman NE1, D'Agostino MD, Maclean GE. Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives. Dev Disabil Res Rev 2013;17:187-96. https://doi.org/10.1002/ddrr.1113
  8. Renaud DL. Leukoencephalopathies associated with macrocephaly. Semin Neurol 2012;32:34-41. https://doi.org/10.1055/s-0032-1306384
  9. Oliveira AR, Valente R, Ramos J, Ventura L. Persistent hyperlactacidaemia: about a clinical case. BMJ Case Rep 2013;22:2013.
  10. Knerr I, Weinhold N, Vockley J, Gibson KM. Advances and challenges in the treatment of branchedchain amino/keto acid metabolic defects. J Inherit Metab Dis 2012;35:29-40. https://doi.org/10.1007/s10545-010-9269-1
  11. Mahoney MJ. Organic acidemias. Clin Perinatol 1976;3:61-78.
  12. Pena L, Franks J, Chapman KA, Gropman A, Ah Mew N, Chakrapani A, et al. Natural history of propionic acidemia. Mol Genet Metab 2012;105:5-9. https://doi.org/10.1016/j.ymgme.2011.09.022
  13. Hoffmann GF, Kolker S. Defects in amino acid catabolism and the urea cycle. Handb Clin Neurol 2013;113:1755-73. https://doi.org/10.1016/B978-0-444-59565-2.00046-0
  14. Gordon N. Glutaric aciduria types I and II. Brain Dev 2006;28:136-40. https://doi.org/10.1016/j.braindev.2005.06.010
  15. Lund AM, Skovby F, Vestergaard H, Christensen M, Christensen E. Clinical and biochemical monitoring of patients with fatty acid oxidation disorders. J Inherit Metab Dis 2010;33:495-500. https://doi.org/10.1007/s10545-009-9000-2
  16. Fukao T, Mitchell G, Sass JO, Hori T, Orii K, Aoyama Y. Ketone body metabolism and its defects. J Inherit Metab Dis. 2014 Apr 8. [Epub ahead of print]
  17. De Meirleir L. Disorders of pyruvate metabolism. Handb Clin Neurol 2013;113:1667-73. https://doi.org/10.1016/B978-0-444-59565-2.00034-4
  18. Nyhan WL. Multiple carboxylase deficiency. Int J Biochem 1988;20:363-70. https://doi.org/10.1016/0020-711X(88)90202-9
  19. Hoffmann GF, Kolker S. Defects in amino acid catabolism and the urea cycle. Handb Clin Neurol 2013;113:1755-73. https://doi.org/10.1016/B978-0-444-59565-2.00046-0
  20. Rothberg AD, Thomson PD, Andronikou S, Cohen DF. Transient neonatal hyperammonaemia. A case report. S Afr Med J 1982;31;62:175-6.
  21. Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, et al. Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 2005;116:757-66. https://doi.org/10.1542/peds.2004-1897
  22. Hommes FA. Inborn errors of fructose metabolism. Am J Clin Nutr 1993;58(5 Suppl):788S-95S.
  23. Kitagawa T. Hepatorenal tyrosinemia. Proc Jpn Acad Ser B Phys Biol Sci 2012;88:192-200. https://doi.org/10.2183/pjab.88.192
  24. Devictor D, Tissieres P, Afanetti M, Debray D. Acute liver failure in children. Clin Res Hepatol Gastroenterol 2011;35:430-7. https://doi.org/10.1016/j.clinre.2011.03.005