DOI QR코드

DOI QR Code

Evidence for adverse effect of perinatal glucocorticoid use on the developing brain

  • Chang, Young Pyo (Department of Pediatrics, Dankook University College of Medicine)
  • Received : 2013.10.15
  • Accepted : 2014.02.04
  • Published : 2014.03.15

Abstract

The use of glucocorticoids (GCs) in the perinatal period is suspected of being associated with adverse effects on long-term neurodevelopmental outcomes for preterm infants. Repeated administration of antenatal GCs to mothers at risk of preterm birth may adversely affect fetal growth and head circumference. Fetal exposure to excess GCs during critical periods of brain development may profoundly modify the limbic system (primarily the hippocampus), resulting in long-term effects on cognition, behavior, memory, co-ordination of the autonomic nervous system, and regulation of the endocrine system later in adult life. Postnatal GC treatment for chronic lung disease in premature infants, particularly involving the use of dexamethasone, has been shown to induce neurodevelopmental impairment and increases the risk of cerebral palsy. In contrast to studies involving postnatal dexamethasone, long-term follow-up studies for hydrocortisone therapy have not revealed adverse effects on neurodevelopmental outcomes. In experimental studies on animals, GCs has been shown to impair neurogenesis, and induce neuronal apoptosis in the immature brains of newborn animals. A recent study has demonstrated that dexamethasone-induced hypomyelination may result from the apoptotic degeneration of oligodendrocyte progenitors in the immature brain. Thus, based on clinical and experimental studies, there is enough evidence to advice caution regarding the use of GCs in the perinatal period; and moreover, the potential long-term effects of GCs on brain development need to be determined.

Keywords

References

  1. Matthews SG. Antenatal glucocorticoids and the developing brain: mechanisms of action. Semin Neonatol 2001;6:309-17. https://doi.org/10.1053/siny.2001.0066
  2. Committee on Fetus and Newborn. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics 2002;109:330-8. https://doi.org/10.1542/peds.109.2.330
  3. Baud O. Antenatal corticosteroid therapy: benefits and risks. Acta Paediatr Suppl 2004;93:6-10.
  4. Watterberg KL; American Academy of Pediatrics. Committee on Fetus and Newborn. Policy statement: postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics 2010;126:800-8. https://doi.org/10.1542/peds.2010-1534
  5. Yates HL, Newell SJ. Postnatal intravenous steroids and long-term neurological outcome: recommendations from meta-analyses. Arch Dis Child Fetal Neonatal Ed 2012;97:F299-303. https://doi.org/10.1136/adc.2010.208868
  6. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972;50:515-25.
  7. Gamsu HR, Mullinger BM, Donnai P, Dash CH. Antenatal administration of betamethasone to prevent respiratory distress syndrome in preterm infants: report of a UK multicentre trial. Br J Obstet Gynaecol 1989;96:401-10. https://doi.org/10.1111/j.1471-0528.1989.tb02413.x
  8. Chapman SJ, Hauth JC, Bottoms SF, Iams JD, Sibai B, Thom E, et al. Benefits of maternal corticosteroid therapy in infants weighing https://doi.org/10.1016/S0002-9378(99)70272-3
  9. Eriksson L, Haglund B, Ewald U, Odlind V, Kieler H. Short and long-term effects of antenatal corticosteroids assessed in a cohort of 7,827 children born preterm. Acta Obstet Gynecol Scand 2009; 88:933-8. https://doi.org/10.1080/00016340903111542
  10. Malloy MH. Antenatal steroid use and neonatal outcome: United States 2007. J Perinatol 2012;32:722-7. https://doi.org/10.1038/jp.2012.22
  11. Battin M, Bevan C, Harding J. Growth in the neonatal period after repeat courses of antenatal corticosteroids: data from the ACTORDS randomised trial. Arch Dis Child Fetal Neonatal Ed 2012;97:F99-105. https://doi.org/10.1136/adc.2011.211318
  12. Peltoniemi OM, Kari MA, Hallman M. Repeated antenatal corticosteroid treatment: a systematic review and meta-analysis. Acta Obstet Gynecol Scand 2011;90:719-27. https://doi.org/10.1111/j.1600-0412.2011.01132.x
  13. Norberg H, Stalnacke J, Diaz Heijtz R, Smedler AC, Nyman M, Forssberg H, et al. Antenatal corticosteroids for preterm birth: dose-dependent reduction in birthweight, length and head circumference. Acta Paediatr 2011;100:364-9. https://doi.org/10.1111/j.1651-2227.2010.02074.x
  14. Peltoniemi OM, Kari MA, Lano A, Yliherva A, Puosi R, Lehtonen L, et al. Two-year follow-up of a randomised trial with repeated antenatal betamethasone. Arch Dis Child Fetal Neonatal Ed 2009;94:F402-6. https://doi.org/10.1136/adc.2008.150250
  15. Wapner RJ, Sorokin Y, Mele L, Johnson F, Dudley DJ, Spong CY, et al. Long-term outcomes after repeat doses of antenatal corticosteroids. N Engl J Med 2007;357:1190-8. https://doi.org/10.1056/NEJMoa071453
  16. Crowther CA, Doyle LW, Haslam RR, Hiller JE, Harding JE, Robinson JS, et al. Outcomes at 2 years of age after repeat doses of antenatal corticosteroids. N Engl J Med 2007;357:1179-89. https://doi.org/10.1056/NEJMoa071152
  17. Murphy KE, Willan AR, Hannah ME, Ohlsson A, Kelly EN, Matthews SG, et al. Effect of antenatal corticosteroids on fetal growth and gestational age at birth. Obstet Gynecol 2012;119:917-23. https://doi.org/10.1097/AOG.0b013e31825189dc
  18. Yeh TF, Lin YJ, Huang CC, Chen YJ, Lin CH, Lin HC, et al. Early dexamethasone therapy in preterm infants: a follow-up study. Pediatrics 1998;101:E7.
  19. Yeh TF, Lin YJ, Lin HC, Huang CC, Hsieh WS, Lin CH, et al. Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N Engl J Med 2004;350:1304-13. https://doi.org/10.1056/NEJMoa032089
  20. Shinwell ES, Karplus M, Reich D, Weintraub Z, Blazer S, Bader D, et al. Early postnatal dexamethasone treatment and increased incidence of cerebral palsy. Arch Dis Child Fetal Neonatal Ed 2000; 83:F177-81. https://doi.org/10.1136/fn.83.3.F177
  21. Doyle LW, Ehrenkranz RA, Halliday HL. Dexamethasone treatment in the first week of life for preventing bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology 2010;98:217-24. https://doi.org/10.1159/000286210
  22. Doyle LW, Ehrenkranz RA, Halliday HL. Postnatal hydrocortisone for preventing or treating bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology 2010;98:111-7. https://doi.org/10.1159/000279992
  23. Stark AR, Carlo WA, Tyson JE, Papile LA, Wright LL, Shankaran S, et al. Adverse effects of early dexamethasone in extremely-lowbirth- weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med 2001;344:95-101. https://doi.org/10.1056/NEJM200101113440203
  24. Sizonenko SV, Borradori-Tolsa C, Bauthay DM, Lodygensky G, Lazeyras F, Huppi P. Impact of intrauterine growth restriction and glucocorticoids on brain development: insights using advanced magnetic resonance imaging. Mol Cell Endocrinol 2006;254-255: 163-71. https://doi.org/10.1016/j.mce.2006.04.035
  25. Champagne DL, de Kloet ER, Joels M. Fundamental aspects of the impact of glucocorticoids on the (immature) brain. Semin Fetal Neonatal Med 2009;14:136-42. https://doi.org/10.1016/j.siny.2008.11.006
  26. Tegethoff M, Pryce C, Meinlschmidt G. Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn, and infant hypothalamic-pituitary-adrenal axis function in humans: a systematic review. Endocr Rev 2009;30:753-89. https://doi.org/10.1210/er.2008-0014
  27. Li J, Wang ZN, Chen YP, Dong YP, Shuai HL, Xiao XM, et al. Late gestational maternal serum cortisol is inversely associated with fetal brain growth. Neurosci Biobehav Rev 2012;36:1085-92. https://doi.org/10.1016/j.neubiorev.2011.12.006
  28. Waffarn F, Davis EP. Effects of antenatal corticosteroids on the hypothalamic-pituitary-adrenocortical axis of the fetus and newborn: experimental findings and clinical considerations. Am J Obstet Gynecol 2012;207:446-54. https://doi.org/10.1016/j.ajog.2012.06.012
  29. Reynolds RM. Antenatal glucocorticoid treatment for preterm birth: considerations for the developing foetus. Clin Endocrinol (Oxf) 2013;78:665-6. https://doi.org/10.1111/cen.12073
  30. Murphy BP, Inder TE, Huppi PS, Warfield S, Zientara GP, Kikinis R, et al. Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 2001;107:217-21. https://doi.org/10.1542/peds.107.2.217
  31. Rademaker KJ, Uiterwaal CS, Groenendaal F, Venema MM, van Bel F, Beek FJ, et al. Neonatal hydrocortisone treatment: neurodevelopmental outcome and MRI at school age in preterm-born children. J Pediatr 2007;150:351-7. https://doi.org/10.1016/j.jpeds.2006.10.051
  32. Parikh NA, Lasky RE, Kennedy KA, Moya FR, Hochhauser L, Romo S, et al. Postnatal dexamethasone therapy and cerebral tissue volumes in extremely low birth weight infants. Pediatrics 2007;119:265-72. https://doi.org/10.1542/peds.2006-1354
  33. Parikh NA, Kennedy KA, Lasky RE, McDavid GE, Tyson JE. Pilot randomized trial of hydrocortisone in ventilator-dependent extremely preterm infants: effects on regional brain volumes. J Pediatr 2013;162:685-90. https://doi.org/10.1016/j.jpeds.2012.09.054
  34. Kersbergen KJ, de Vries LS, van Kooij BJ, Isgum I, Rademaker KJ, van Bel F, et al. Hydrocortisone treatment for bronchopulmonary dysplasia and brain volumes in preterm infants. J Pediatr 2013;163:666-71. https://doi.org/10.1016/j.jpeds.2013.04.001
  35. Canterino JC, Verma U, Visintainer PF, Elimian A, Klein SA, Tejani N. Antenatal steroids and neonatal periventricular leukomalacia. Obstet Gynecol 2001;97:135-9. https://doi.org/10.1016/S0029-7844(00)01124-8
  36. Agarwal R, Chiswick ML, Rimmer S, Taylor GM, McNally RJ, Alston RD, et al. Antenatal steroids are associated with a reduction in the incidence of cerebral white matter lesions in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 2002;86:F96-F101. https://doi.org/10.1136/fn.86.2.F96
  37. Baud O, Foix-L'Helias L, Kaminski M, Audibert F, Jarreau PH, Papiernik E, et al. Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. N Engl J Med 1999;341:1190-6. https://doi.org/10.1056/NEJM199910143411604
  38. Gaillard EA, Cooke RW, Shaw NJ. Improved survival and neurodevelopmental outcome after prolonged ventilation in preterm neonates who have received antenatal steroids and surfactant. Arch Dis Child Fetal Neonatal Ed 2001;84:F194-6. https://doi.org/10.1136/fn.84.3.F194
  39. Vohr BR, Wright LL, Poole WK, McDonald SA. Neurodevelopmental outcomes of extremely low birth weight infants <32 weeks' gestation between 1993 and 1998. Pediatrics 2005;116:635-43. https://doi.org/10.1542/peds.2004-2247
  40. Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N, Wilkinson AR, et al. The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonatal Ed 2005;90:F134-40. https://doi.org/10.1136/adc.2004.052407
  41. Chawla S, Bapat R, Pappas A, Bara R, Zidan M, Natarajan G. Neurodevelopmental outcome of extremely premature infants exposed to incomplete, no or complete antenatal steroids. J Matern Fetal Neonatal Med 2013;26:1542-7. https://doi.org/10.3109/14767058.2013.791273
  42. Ikegami M, Jobe AH, Newnham J, Polk DH, Willet KE, Sly P. Repetitive prenatal glucocorticoids improve lung function and decrease growth in preterm lambs. Am J Respir Crit Care Med 1997;156:178-84. https://doi.org/10.1164/ajrccm.156.1.9612036
  43. Modi N, Lewis H, Al-Naqeeb N, Ajayi-Obe M, Dore CJ, Rutherford M. The effects of repeated antenatal glucocorticoid therapy on the developing brain. Pediatr Res 2001;50:581-5. https://doi.org/10.1203/00006450-200111000-00008
  44. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Paediatr Child Health 2002;7:20-46. https://doi.org/10.1093/pch/7.1.20
  45. Gupta S, Prasanth K, Chen CM, Yeh TF. Postnatal corticosteroids for prevention and treatment of chronic lung disease in the preterm newborn. Int J Pediatr 2012;2012:315642.
  46. Fitzhardinge PM, Eisen A, Lejtenyi C, Metrakos K, Ramsay M.Sequelae of early steroid administration to the newborn infant. Pediatrics 1974;53:877-83.
  47. Cummings JJ, D'Eugenio DB, Gross SJ. A controlled trial of dexamethasone in preterm infants at high risk for bronchopulmonary dysplasia. N Engl J Med 1989;320:1505-10. https://doi.org/10.1056/NEJM198906083202301
  48. Jones R, Wincott E, Elbourne D, Grant A. Controlled trial of dexamethasone in neonatal chronic lung disease: a 3-year follow-up. Pediatrics 1995;96(5 Pt 1):897-906.
  49. O'Shea TM, Kothadia JM, Klinepeter KL, Goldstein DJ, Jackson BG, Weaver RG 3rd, et al. Randomized placebo-controlled trial of a 42-day tapering course of dexamethasone to reduce the duration of ventilator dependency in very low birth weight infants: outcome of study participants at 1-year adjusted age. Pediatrics 1999;104(1 Pt 1):15-21. https://doi.org/10.1542/peds.104.1.15
  50. Barrington KJ. The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatr 2001;1:1. https://doi.org/10.1186/1471-2431-1-1
  51. Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG, Sinclair JC. Impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk for chronic lung disease. Pediatrics 2005;115:655-61. https://doi.org/10.1542/peds.2004-1238
  52. Vincer MJ, Allen AC, Joseph KS, Stinson DA, Scott H, Wood E. Increasing prevalence of cerebral palsy among very preterm infants: a population-based study. Pediatrics 2006;118:e1621-6. https://doi.org/10.1542/peds.2006-1522
  53. LeFlore JL, Engle WD. Growth and neurodevelopment in extremely low-birth-weight neonates exposed to postnatal steroid therapy. Am J Perinatol 2011;28:635-42. https://doi.org/10.1055/s-0031-1276738
  54. Crotty KC, Ahronovich MD, Baron IS, Baker R, Erickson K, Litman FR. Neuropsychological and behavioral effects of postnatal dexamethasone in extremely low birth weight preterm children at early school age. J Perinatol 2012;32:139-46. https://doi.org/10.1038/jp.2011.62
  55. Doyle LW, Ehrenkranz RA, Halliday HL. Dexamethasone treatment after the first week of life for bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology 2010;98:289-96. https://doi.org/10.1159/000286212
  56. McEvoy C, Bowling S, Williamson K, McGaw P, Durand M. Randomized, double-blinded trial of low-dose dexamethasone: II. Functional residual capacity and pulmonary outcome in very low birth weight infants at risk for bronchopulmonary dysplasia. Pediatr Pulmonol 2004;38:55-63. https://doi.org/10.1002/ppul.20037
  57. Armstrong DL, Penrice J, Bloomfield FH, Knight DB, Dezoete JA, Harding JE. Follow up of a randomised trial of two different courses of dexamethasone for preterm babies at risk of chronic lung disease. Arch Dis Child Fetal Neonatal Ed 2002;86:F102-7. https://doi.org/10.1136/fn.86.2.F102
  58. Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB; DART Study Investigators. Outcome at 2 years of age of infants from the DART study: a multicenter, international, randomized, controlled trial of low-dose dexamethasone. Pediatrics 2007;119:716-21. https://doi.org/10.1542/peds.2006-2806
  59. Romagnoli C, Zecca E, Luciano R, Torrioli G, Tortorolo G. Controlled trial of early dexamethasone treatment for the prevention of chronic lung disease in preterm infants: a 3-year follow-up. Pediatrics 2002;109:e85. https://doi.org/10.1542/peds.109.6.e85
  60. O'Shea TM, Washburn LK, Nixon PA, Goldstein DJ. Follow-up of a randomized, placebo-controlled trial of dexamethasone to decrease the duration of ventilator dependency in very low birth weight infants: neurodevelopmental outcomes at 4 to 11 years of age. Pediatrics 2007;120:594-602. https://doi.org/10.1542/peds.2007-0486
  61. Gross SJ, Anbar RD, Mettelman BB. Follow-up at 15 years of preterm infants from a controlled trial of moderately early dexamethasone for the prevention of chronic lung disease. Pediatrics 2005;115:681-7. https://doi.org/10.1542/peds.2004-0956
  62. Jones RA; Collaborative Dexamethasone Trial Follow-up Group. Randomized, controlled trial of dexamethasone in neonatal chronic lung disease: 13- to 17-year follow-up study: I. Neurologic, psychological, and educational outcomes. Pediatrics 2005;116:370-8. https://doi.org/10.1542/peds.2004-1818
  63. Wilson TT, Waters L, Patterson CC, McCusker CG, Rooney NM, Marlow N, et al. Neurodevelopmental and respiratory followup results at 7 years for children from the United Kingdom and Ireland enrolled in a randomized trial of early and late postnatal corticosteroid treatment, systemic and inhaled (the Open Study of Early Corticosteroid Treatment). Pediatrics 2006;117:2196-205. https://doi.org/10.1542/peds.2005-2194
  64. Onland W, De Jaegere AP, Offringa M, van Kaam AH. Effects of higher versus lower dexamethasone doses on pulmonary and neurodevelopmental sequelae in preterm infants at risk for chronic lung disease: a meta-analysis. Pediatrics 2008;122:92-101. https://doi.org/10.1542/peds.2007-2258
  65. Wilson-Costello D, Walsh MC, Langer JC, Guillet R, Laptook AR, Stoll BJ, et al. Impact of postnatal corticosteroid use on neurodevelopment at 18 to 22 months' adjusted age: effects of dose, timing, and risk of bronchopulmonary dysplasia in extremely low birth weight infants. Pediatrics 2009;123:e430-7. https://doi.org/10.1542/peds.2008-1928
  66. Onland W, Offringa M, De Jaegere AP, van Kaam AH. Finding the optimal postnatal dexamethasone regimen for preterm infants at risk of bronchopulmonary dysplasia: a systematic review of placebocontrolled trials. Pediatrics 2009;123:367-77. https://doi.org/10.1542/peds.2008-0016
  67. Stark AR, Carlo WA, Vohr BR, Papile LA, Saha S, Bauer CR, et al.Death or neurodevelopmental impairment at 18 to 22 months corrected age in a randomized trial of early dexamethasone to prevent death or chronic lung disease in extremely low birth weight infants. J Pediatr 2014;164:34-39.e2. https://doi.org/10.1016/j.jpeds.2013.07.027
  68. Ng PC, Lee CH, Lam CW, Ma KC, Fok TF, Chan IH, et al. Transient adrenocortical insufficiency of prematurity and systemic hypotension in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 2004;89:F119-26. https://doi.org/10.1136/adc.2002.021972
  69. Peltoniemi O, Kari MA, Heinonen K, Saarela T, Nikolajev K, Andersson S, et al. Pretreatment cortisol values may predict responses to hydrocortisone administration for the prevention of bronchopulmonary dysplasia in high-risk infants. J Pediatr 2005;146:632-7. https://doi.org/10.1016/j.jpeds.2004.12.040
  70. Lodygensky GA, Rademaker K, Zimine S, Gex-Fabry M, Lieftink AF, Lazeyras F, et al. Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics 2005;116:1-7. https://doi.org/10.1542/peds.2004-1275
  71. Benders MJ, Groenendaal F, van Bel F, Ha Vinh R, Dubois J, Lazeyras F, et al. Brain development of the preterm neonate after neonatal hydrocortisone treatment for chronic lung disease. Pediatr Res 2009;66:555-9. https://doi.org/10.1203/PDR.0b013e3181b3aec5
  72. Rademaker KJ, de Vries LS, Uiterwaal CS, Groenendaal F, Grobbee DE, van Bel F. Postnatal hydrocortisone treatment for chronic lung disease in the preterm newborn and long-term neurodevelopmental followup. Arch Dis Child Fetal Neonatal Ed 2008;93:F58-63. https://doi.org/10.1136/adc.2007.119545
  73. Watterberg KL, Shaffer ML, Mishefske MJ, Leach CL, Mammel MC, Couser RJ, et al. Growth and neurodevelopmental outcomes after early low-dose hydrocortisone treatment in extremely low birth weight infants. Pediatrics 2007;120:40-8. https://doi.org/10.1542/peds.2006-3158
  74. Bonsante F, Latorre G, Iacobelli S, Forziati V, Laforgia N, Esposito L, et al. Early low-dose hydrocortisone in very preterm infants: a randomized, placebo-controlled trial. Neonatology 2007;91:217-21. https://doi.org/10.1159/000098168
  75. Rademaker KJ, de Vries WB. Long-term effects of neonatal hydrocortisone treatment for chronic lung disease on the developing brain and heart. Semin Fetal Neonatal Med 2009;14:171-7. https://doi.org/10.1016/j.siny.2008.11.004
  76. Peltoniemi OM, Lano A, Puosi R, Yliherva A, Bonsante F, Kari MA, et al. Trial of early neonatal hydrocortisone: two-year follow-up. Neonatology 2009;95:240-7. https://doi.org/10.1159/000164150
  77. Needelman H, Hoskoppal A, Roberts H, Evans M, Bodensteiner JB. The effect of hydrocortisone on neurodevelopmental outcome in premature infants less than 29 weeks' gestation. J Child Neurol 2010;25:448-52. https://doi.org/10.1177/0883073809348059
  78. Yamasaki C, Uchiyama A, Nakanishi H, Masumoto K, Aoyagi H, Washio Y, et al. Hydrocortisone and long-term outcomes in verylow-birthweight infants. Pediatr Int 2012;54:465-70. https://doi.org/10.1111/j.1442-200X.2012.03601.x
  79. van der Heide-Jalving M, Kamphuis PJ, van der Laan MJ, Bakker JM, Wiegant VM, Heijnen CJ, et al. Short- and long-term effects of neonatal glucocorticoid therapy: is hydrocortisone an alternative to dexamethasone? Acta Paediatr 2003;92:827-35. https://doi.org/10.1111/j.1651-2227.2003.tb02541.x
  80. Karemaker R, Heijnen CJ, Veen S, Baerts W, Samsom J, Visser GH, et al. Differences in behavioral outcome and motor development at school age after neonatal treatment for chronic lung disease with dexamethasone versus hydrocortisone. Pediatr Res 2006;60:745-50. https://doi.org/10.1203/01.pdr.0000246200.76860.de
  81. Rashid S, Lewis GF. The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissues. Clin Biochem 2005;38:401-9. https://doi.org/10.1016/j.clinbiochem.2004.11.009
  82. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998;19:269-301.
  83. Inder TE, Benders M. Postnatal steroids in the preterm infant-the good, the ugly, and the unknown. J Pediatr 2013;162:667-70. https://doi.org/10.1016/j.jpeds.2012.12.039
  84. Dean F, Matthews SG. Maternal dexamethasone treatment in late gestation alters glucocorticoid and mineralocorticoid receptor mRNA in the fetal guinea pig brain. Brain Res 1999;846:253-9. https://doi.org/10.1016/S0006-8993(99)02064-8
  85. Haynes LE, Griffiths MR, Hyde RE, Barber DJ, Mitchell IJ. Dexamethasone induces limited apoptosis and extensive sublethal damage to specific subregions of the striatum and hippocampus: implications for mood disorders. Neuroscience 2001;104:57-69. https://doi.org/10.1016/S0306-4522(01)00070-7
  86. Kanagawa T, Tomimatsu T, Hayashi S, Shioji M, Fukuda H, Shimoya K, et al. The effects of repeated corticosteroid administration on the neurogenesis in the neonatal rat. Am J Obstet Gynecol 2006;194: 231-8. https://doi.org/10.1016/j.ajog.2005.06.015
  87. Ahlbom E, Gogvadze V, Chen M, Celsi G, Ceccatelli S. Prenatal exposure to high levels of glucocorticoids increases the susceptibility of cerebellar granule cells to oxidative stress-induced cell death. Proc Natl Acad Sci U S A 2000;97:14726-30. https://doi.org/10.1073/pnas.260501697
  88. Noguchi KK, Lau K, Smith DJ, Swiney BS, Farber NB. Glucocorticoid receptor stimulation and the regulation of neonatal cerebellar neural progenitor cell apoptosis. Neurobiol Dis 2011;43:356-63. https://doi.org/10.1016/j.nbd.2011.04.004
  89. Bhatt AJ, Feng Y, Wang J, Famuyide M, Hersey K. Dexamethasone induces apoptosis of progenitor cells in the subventricular zone and dentate gyrus of developing rat brain. J Neurosci Res 2013;91:1191-202. https://doi.org/10.1002/jnr.23232
  90. Kim JW, Kim YJ, Chang YP. Administration of dexamethasone to neonatal rats induces hypomyelination and changes in the morphology of oligodendrocyte precursors. Comp Med 2013;63:48-54.
  91. Gumbinas M, Oda M, Huttenlocher P. The effects of corticosteroids on myelination of the developing rat brain. Biol Neonate 1973;22:355-66. https://doi.org/10.1159/000240568
  92. Antonow-Schlorke I, Helgert A, Gey C, Coksaygan T, Schubert H, Nathanielsz PW, et al. Adverse effects of antenatal glucocorticoids on cerebral myelination in sheep. Obstet Gynecol 2009;113:142-51. https://doi.org/10.1097/AOG.0b013e3181924d3b
  93. Tsuneishi S, Takada S, Motoike T, Ohashi T, Sano K, Nakamura H. Effects of dexamethasone on the expression of myelin basic protein, proteolipid protein, and glial fibrillary acidic protein genes in developing rat brain. Brain Res Dev Brain Res 1991;61:117-23. https://doi.org/10.1016/0165-3806(91)90121-X
  94. Melcangi RC, Magnaghi V, Cavarretta I, Riva MA, Martini L. Corticosteroid effects on gene expression of myelin basic protein in oligodendrocytes and of glial fibrillary acidic protein in type 1 astrocytes. J Neuroendocrinol 1997;9:729-33.
  95. Almazan G, Honegger P, Du Pasquier P, Matthieu JM. Dexamethasone stimulates the biochemical differentiation of fetal forebrain cells in reaggregating cultures. Dev Neurosci 1986;8:14-23. https://doi.org/10.1159/000112237

Cited by

  1. Efficacy of Antenatal Corticosteroid Treatment on Neurodevelopmental Outcome according to Head Circumference at Birth vol.113, pp.1, 2017, https://doi.org/10.1159/000479675
  2. Inhaled and systemic steroid exposure and neurodevelopmental outcome of preterm neonates vol.31, pp.20, 2014, https://doi.org/10.1080/14767058.2017.1350644
  3. Neurological outcomes of antenatal corticosteroid therapy vol.75, pp.12, 2014, https://doi.org/10.1111/ijcp.14936