DOI QR코드

DOI QR Code

Diet components can suppress inflammation and reduce cancer risk

  • Hardman, W. Elaine (Department of Biochemistry and Microbiology, Marshall University Joan C. Edwards School of Medicine)
  • Received : 2014.04.11
  • Accepted : 2014.04.25
  • Published : 2014.06.01

Abstract

Epidemiology studies indicate that diet or specific dietary components can reduce the risk for cancer, cardiovascular disease and diabetes. An underlying cause of these diseases is chronic inflammation. Dietary components that are beneficial against disease seem to have multiple mechanisms of action and many also have a common mechanism of reducing inflammation, often via the $NF{\kappa}B$ pathway. Thus, a plant based diet can contain many components that reduce inflammation and can reduce the risk for developing all three of these chronic diseases. We summarize dietary components that have been shown to reduce cancer risk and two studies that show that dietary walnut can reduce cancer growth and development. Part of the mechanism for the anticancer benefit of walnut was by suppressing the activation of $NF{\kappa}B$. In this brief review, we focus on reduction of cancer risk by dietary components and the relationship to suppression of inflammation. However, it should be remembered that most dietary components have multiple beneficial mechanisms of action that can be additive and that suppression of chronic inflammation should reduce the risk for all three chronic diseases.

Keywords

References

  1. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 1981;66:1191-308.
  2. World Cancer Research Fund; American Institute for Cancer Research (US). Food, Nutrition and the Prevention of Cancer: a Global Perspective. Washington, D.C.: American Institute for Cancer Research; 1997.
  3. World Cancer Research Fund; American Institute for Cancer Research (US). Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective. Washington, D.C.: American Institute for Cancer Research; 2007.
  4. Rhodes JM. Unifying hypothesis for inflammatory bowel disease and associated colon cancer: sticking the pieces together with sugar. Lancet 1996;347:40-4. https://doi.org/10.1016/S0140-6736(96)91563-9
  5. Grce M, Mravak-Stipetic M. Human papillomavirus-associated diseases. Clin Dermatol 2014;32:253-8. https://doi.org/10.1016/j.clindermatol.2013.10.006
  6. Rambau PF, Chalya PL, Jackson K. Schistosomiasis and urinary bladder cancer in North Western Tanzania: a retrospective review of 185 patients. Infect Agent Cancer 2013;8:19. https://doi.org/10.1186/1750-9378-8-19
  7. Qadri Q, Rasool R, Gulzar GM, Naqash S, Shah ZA. H. pylori infection, inflammation and gastric cancer. J Gastrointest Cancer. Forthcoming 2014.
  8. Donath MY, Dalmas E, Sauter NS, Boni-Schnetzler M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 2013;17:860-72. https://doi.org/10.1016/j.cmet.2013.05.001
  9. Crujeiras AB, Diaz-Lagares A, Carreira MC, Amil M, Casanueva FF. Oxidative stress associated to dysfunctional adipose tissue: a potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic Res 2013;47:243-56. https://doi.org/10.3109/10715762.2013.772604
  10. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:539-45. https://doi.org/10.1016/S0140-6736(00)04046-0
  11. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420: 860-7. https://doi.org/10.1038/nature01322
  12. Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism 2013;62:1543-52. https://doi.org/10.1016/j.metabol.2013.07.001
  13. Lee H, Lee IS, Choue R. Obesity, inflammation and diet. Pediatr Gastroenterol Hepatol Nutr 2013;16:143-52. https://doi.org/10.5223/pghn.2013.16.3.143
  14. Tarantino G, Capone D. Inhibition of the mTOR pathway: a possible protective role in coronary artery disease. Ann Med 2013;45:348-56. https://doi.org/10.3109/07853890.2013.770333
  15. Chen F, Castranova V. Nuclear factor-kappaB, an unappreciated tumor suppressor. Cancer Res 2007;67:11093-8. https://doi.org/10.1158/0008-5472.CAN-07-1576
  16. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004;6:203-8. https://doi.org/10.1016/j.ccr.2004.09.003
  17. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007;117:1175-83. https://doi.org/10.1172/JCI31537
  18. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5: 749-59. https://doi.org/10.1038/nri1703
  19. Miyamoto S. Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res 2011;21:116-30. https://doi.org/10.1038/cr.2010.179
  20. Bours V, Bonizzi G, Bentires-Alj M, Bureau F, Piette J, Lekeux P, Merville M. NF-kappaB activation in response to toxical and therapeutical agents: role in inflammation and cancer treatment. Toxicology 2000; 153:27-38. https://doi.org/10.1016/S0300-483X(00)00302-4
  21. Clevers H. At the crossroads of inflammation and cancer. Cell 2004;118:671-4. https://doi.org/10.1016/j.cell.2004.09.005
  22. Cao Y, Karin M. NF-kappaB in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2003;8:215-23. https://doi.org/10.1023/A:1025905008934
  23. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301-10. https://doi.org/10.1038/nrc780
  24. Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint Jean L, Case TC, Ellwood-Yen K, Sawyers CL, Bhowmick NA, Blackwell TS, Yull FE, Matusik RJ. The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 2008;68:6762-9. https://doi.org/10.1158/0008-5472.CAN-08-0107
  25. Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 2006;13:738-47. https://doi.org/10.1038/sj.cdd.4401877
  26. Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj- Vadhan S, Estrov Z, Talpaz M, Aggarwal BB. Nuclear factor-kappaB and STAT3 are constitutively active in CD138 + cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004;103:3175-84. https://doi.org/10.1182/blood-2003-06-2151
  27. Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 2010;29:405-34. https://doi.org/10.1007/s10555-010-9235-2
  28. Potter JD, Steinmetz K. Vegetables, fruit and phytoestrogens as preventive agents. IARC Sci Publ 1996:61-90.
  29. Chan JM, Gann PH, Giovannucci EL. Role of diet in prostate cancer development and progression. J Clin Oncol 2005;23:8152-60. https://doi.org/10.1200/JCO.2005.03.1492
  30. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004;79:727-47.
  31. Oseni T, Patel R, Pyle J, Jordan VC. Selective estrogen receptor modulators and phytoestrogens. Planta Med 2008;74:1656-65. https://doi.org/10.1055/s-0028-1088304
  32. Horia E, Watkins BA. Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB- 231 breast cancer cells. Carcinogenesis 2007;28:809-15.
  33. Sakamoto Y, Naka A, Ohara N, Kondo K, Iida K. Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPAR${\gamma}$. Mol Nutr Food Res 2014;58:718-26. https://doi.org/10.1002/mnfr.201300482
  34. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 2005;280:5636-45. https://doi.org/10.1074/jbc.M408177200
  35. O'Leary KA, de Pascual-Teresa S, Needs PW, Bao YP, O'Brien NM, Williamson G. Effect of flavonoids and vitamin E on cyclooxygenase- 2 (COX-2) transcription. Mutat Res 2004;551:245-54. https://doi.org/10.1016/j.mrfmmm.2004.01.015
  36. Bae JH, Kim JY, Kim MJ, Chang SH, Park YS, Son CH, Park SJ, Chung JS, Lee EY, Kim SH, Kang CD. Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J Immunother 2010;33:391-401. https://doi.org/10.1097/CJI.0b013e3181d32f22
  37. Wang G, Zhang J, Liu L, Sharma S, Dong Q. Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PLoS One 2012;7:e51764. https://doi.org/10.1371/journal.pone.0051764
  38. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013;138:2099-107. https://doi.org/10.1016/j.foodchem.2012.11.139
  39. Delgado L, Fernandes I, Gonzalez-Manzano S, de Freitas V, Mateus N, Santos-Buelga C. Anti-proliferative effects of quercetin and catechin metabolites. Food Funct 2014;5:797-803. https://doi.org/10.1039/c3fo60441a
  40. Al-Hanbali M, Ali D, Bustami M, Abdel-Malek S, Al-Hanbali R, Alhussainy T, Qadan F, Matalka KZ. Epicatechin suppresses IL-6, IL-8 and enhances IL-10 production with NF-kappaB nuclear translocation in whole blood stimulated system. Neuro Endocrinol Lett 2009;30: 131-8.
  41. Shan X, Li Y, Meng X, Wang P, Jiang P, Feng Q. Curcumin and (-)- epigallocatechin-3-gallate attenuate acrylamide-induced proliferation in HepG2 cells. Food Chem Toxicol 2014;66:194-202. https://doi.org/10.1016/j.fct.2014.01.046
  42. Saldanha SN, Kala R, Tollefsbol TO. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate. Exp Cell Res. Forthcoming 2014.
  43. Thangapazham RL, Singh AK, Sharma A, Warren J, Gaddipati JP, Maheshwari RK. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett 2007;245:232-41. https://doi.org/10.1016/j.canlet.2006.01.027
  44. Carter LG, D'Orazio JA, Pearson KJ. Resveratrol and cancer: a focus on in vivo evidence. Endocr Relat Cancer. Forthcoming 2014.
  45. Mezzanotte L, An N, Mol IM, Lowik CW, Kaijzel EL. A new multicolor bioluminescence imaging platform to investigate NF-${\kappa}$B activity and apoptosis in human breast cancer cells. PLoS One 2014;9:e85550. https://doi.org/10.1371/journal.pone.0085550
  46. Mazue F, Delmas D, Murillo G, Saleiro D, Limagne E, Latruffe N. Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis. Food Funct 2014;5:663-70. https://doi.org/10.1039/c3fo60417a
  47. Garcia-Munoz C, Vaillant F. Metabolic fate of ellagitannins: implications for health, and research perspectives for innovative functional foods. Crit Rev Food Sci Nutr 2014;54:1584-98. https://doi.org/10.1080/10408398.2011.644643
  48. Rodriguez-Mateos A, Heiss C, Borges G, Crozier A. Berry (Poly) phenols and cardiovascular health. J Agric Food Chem. Forthcoming 2013.
  49. Nunez-Sanchez MA, Garcia-Villalba R, Monedero-Saiz T, Garcia- Talavera NV, Gomez-Sanchez MB, Sanchez-Alvarez C, Garcia-Albert AM, Rodriguez-Gil FJ, Ruiz-Marin M, Pastor-Quirante FA, Martinez- Diaz F, Yanez-Gascon MJ, Gonzalez-Sarrias A, Tomas-Barberan FA, Espin JC. Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Mol Nutr Food Res. Forthcoming 2014.
  50. Banerjee N, Kim H, Talcott S, Mertens-Talcott S. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR. Carcinogenesis 2013;34:2814-22. https://doi.org/10.1093/carcin/bgt295
  51. Gonzalez-Sarrias A, Miguel V, Merino G, Lucas R, Morales JC, Tomas- Barberan F, Alvarez AI, Espin JC. The gut microbiota ellagic acidderived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP). J Agric Food Chem 2013;61:4352-9. https://doi.org/10.1021/jf4007505
  52. Kita T, Imai S, Sawada H, Kumagai H, Seto H. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors. Biosci Biotechnol Biochem 2008;72:1789-98. https://doi.org/10.1271/bbb.80075
  53. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2009;30:85-94. https://doi.org/10.1016/j.tips.2008.11.002
  54. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 2008;76:1590-611. https://doi.org/10.1016/j.bcp.2008.08.008
  55. Liu T, Bohlken A, Kuljaca S, Lee M, Nguyen T, Smith S, Cheung B, Norris MD, Haber M, Holloway AJ, Bowtell DD, Marshall GM. The retinoid anticancer signal: mechanisms of target gene regulation. Br J Cancer 2005;93:310-8. https://doi.org/10.1038/sj.bjc.6602700
  56. Moon RC, Constantinou AI. Dietary retinoids and carotenoids in rodent models of mammary tumorigenesis. Breast Cancer Res Treat 1997;46:181-9. https://doi.org/10.1023/A:1005995925246
  57. Tamimi RM, Hankinson SE, Campos H, Spiegelman D, Zhang S, Colditz GA, Willett WC, Hunter DJ. Plasma carotenoids, retinol, and tocopherols and risk of breast cancer. Am J Epidemiol 2005;161: 153-60. https://doi.org/10.1093/aje/kwi030
  58. Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res 2007;55:207-16. https://doi.org/10.1016/j.phrs.2007.01.012
  59. Wang L, Li B, Pan MX, Mo XF, Chen YM, Zhang CX. Specific carotenoid intake is inversely associated with the risk of breast cancer among Chinese women. Br J Nutr 2014;111:1686-95. https://doi.org/10.1017/S000711451300411X
  60. Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S. Antiproliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci 2014;105:252-7. https://doi.org/10.1111/cas.12349
  61. Zu K, Mucci L, Rosner BA, Clinton SK, Loda M, Stampfer MJ, Giovannucci E. Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. J Natl Cancer Inst 2014;106:djt430. https://doi.org/10.1093/jnci/djt430
  62. Brigelius-Flohe R, Traber MG. Vitamin E: function and metabolism. FASEB J 1999;13:1145-55.
  63. Campbell SE, Stone WL, Whaley SG, Qui M, Krishnan K. Gamma (${\gamma}$) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (${\gamma}$) expression in SW 480 human colon cancer cell lines. BMC Cancer 2003;3:25. https://doi.org/10.1186/1471-2407-3-25
  64. Lee HJ, Ju J, Paul S, So JY, DeCastro A, Smolarek A, Lee MJ, Yang CS, Newmark HL, Suh N. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPARgamma. Clin Cancer Res 2009;15:4242-9. https://doi.org/10.1158/1078-0432.CCR-08-3028
  65. Dolfi SC, Yang Z, Lee MJ, Guan F, Hong J, Yang CS. Inhibitory effects of different forms of tocopherols, tocopherol phosphates, and tocopherol quinones on growth of colon cancer cells. J Agric Food Chem 2013;61:8533-40. https://doi.org/10.1021/jf401076g
  66. Lu G, Xiao H, Li GX, Picinich SC, Chen YK, Liu A, Lee MJ, Loy S, Yang CS. A gamma-tocopherol-rich mixture of tocopherols inhibits chemically induced lung tumorigenesis in A/J mice and xenograft tumor growth. Carcinogenesis 2010;31:687-94. https://doi.org/10.1093/carcin/bgp332
  67. Park HS, Han MH, Kim GY, Moon SK, Kim WJ, Hwang HJ, Park KY, Choi YH. Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells. Food Chem Toxicol 2014;64:157-65. https://doi.org/10.1016/j.fct.2013.11.034
  68. Hussain A, Mohsin J, Prabhu SA, Begum S, Nusri Qel A, Harish G, Javed E, Khan MA, Sharma C. Sulforaphane inhibits growth of human breast cancer cells and augments the therapeutic index of the chemotherapeutic drug, gemcitabine. Asian Pac J Cancer Prev 2013;14:5855-60. https://doi.org/10.7314/APJCP.2013.14.10.5855
  69. Lenzi M, Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Cancer Treat Res 2014;159:207-23. https://doi.org/10.1007/978-3-642-38007-5_12
  70. Wolf MA, Claudio PP. Benzyl isothiocyanate inhibits HNSCC cell migration and invasion, and sensitizes HNSCC cells to cisplatin. Nutr Cancer 2014;66:285-94. https://doi.org/10.1080/01635581.2014.868912
  71. Tse G, Eslick GD. Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr Cancer 2014;66:128-39. https://doi.org/10.1080/01635581.2014.852686
  72. Tusskorn O, Senggunprai L, Prawan A, Kukongviriyapan U, Kukongviriyapan V. Phenethyl isothiocyanate induces calcium mobilization and mitochondrial cell death pathway in cholangiocarcinoma KKU-M214 cells. BMC Cancer 2013;13:571. https://doi.org/10.1186/1471-2407-13-571
  73. Liu H, Talalay P. Relevance of anti-inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease prevention. Proc Natl Acad Sci U S A 2013;110:19065-70. https://doi.org/10.1073/pnas.1318247110
  74. Schäfer G, Kaschula CH. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer Agents Med Chem 2014;14:233-40. https://doi.org/10.2174/18715206113136660370
  75. Zhou XF, Ding ZS, Liu NB. Allium vegetables and risk of prostate cancer: evidence from 132,192 subjects. Asian Pac J Cancer Prev 2013;14:4131-4. https://doi.org/10.7314/APJCP.2013.14.7.4131
  76. Borkowska A, Knap N, Antosiewicz J. Diallyl trisulfide is more cytotoxic to prostate cancer cells PC-3 than to noncancerous epithelial cell line PNT1A: a possible role of p66Shc signaling axis. Nutr Cancer 2013;65:711-7. https://doi.org/10.1080/01635581.2013.789115
  77. Garcia JJ, Lopez-Pingarron L, Almeida-Souza P, Tres A, Escudero P, Garcia-Gil FA, Tan DX, Reiter RJ, Ramirez JM, Bernal-Perez M. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 2014;56:225-37. https://doi.org/10.1111/jpi.12128
  78. Reiter RJ, Tan DX, Manchester LC, Korkmaz A, Fuentes-Broto L, Hardman WE, Rosales-Corral SA, Qi W. A walnut-enriched diet reduces the growth of LNCaP human prostate cancer xenografts in nude mice. Cancer Invest 2013;31:365-73. https://doi.org/10.3109/07357907.2013.800095
  79. Lv D, Cui PL, Yao SW, Xu YQ, Yang ZX. Melatonin inhibits the expression of vascular endothelial growth factor in pancreatic cancer cells. Chin J Cancer Res 2012;24:310-6. https://doi.org/10.1007/s11670-012-0269-6
  80. Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Esquifino AI, Cardinali DP, Maestroni GJ. Melatonin, environmental light, and breast cancer. Breast Cancer Res Treat 2008;108:339-50. https://doi.org/10.1007/s10549-007-9617-5
  81. Garcia-Navarro A, Gonzalez-Puga C, Escames G, Lopez LC, Lopez A, Lopez-Cantarero M, Camacho E, Espinosa A, Gallo MA, Acuna- Castroviejo D. Cellular mechanisms involved in the melatonin inhibition of HT-29 human colon cancer cell proliferation in culture. J Pineal Res 2007;43:195-205. https://doi.org/10.1111/j.1600-079X.2007.00463.x
  82. Rodriguez C, Martin V, Herrera F, Garcia-Santos G, Rodriguez-Blanco J, Casado-Zapico S, Sanchez-Sanchez AM, Suarez S, Puente- Moncada N, Anitua MJ, Antolin I. Mechanisms involved in the pro-apoptotic effect of melatonin in cancer cells. Int J Mol Sci 2013;14:6597-613. https://doi.org/10.3390/ijms14046597
  83. Wu KK. Control of cyclooxygenase-2 transcriptional activation by pro-inflammatory mediators. Prostaglandins Leukot Essent Fatty Acids 2005;72:89-93. https://doi.org/10.1016/j.plefa.2004.11.001
  84. Akinsete JA, Ion G, Witte TR, Hardman WE. Consumption of high omega-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice. Carcinogenesis 2012;33:140-8. https://doi.org/10.1093/carcin/bgr238
  85. Badawi AF, El-Sohemy A, Stephen LL, Ghoshal AK, Archer MC. The effect of dietary n-3 and n-6 polyunsaturated fatty acids on the expression of cyclooxygenase 1 and 2 and levels of p21ras in rat mammary glands. Carcinogenesis 1998;19:905-10. https://doi.org/10.1093/carcin/19.5.905
  86. Berquin IM, Edwards IJ, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 2008;269:363-77. https://doi.org/10.1016/j.canlet.2008.03.044
  87. Biondo PD, Brindley DN, Sawyer MB, Field CJ. The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem 2008;19:787-96. https://doi.org/10.1016/j.jnutbio.2008.02.003
  88. Blok WL, Katan MB, van der Meer JW. Modulation of inflammation and cytokine production by dietary (n-3) fatty acids. J Nutr 1996;126: 1515-33.
  89. Bougnoux P, Germain E, Chajès V, Hubert B, Lhuillery C, Le Floch O, Body G, Calais G. Cytotoxic drugs efficacy correlates with adipose tissue docosahexaenoic acid level in locally advanced breast carcinoma. Br J Cancer 1999;79:1765-9. https://doi.org/10.1038/sj.bjc.6690281
  90. Calviello G, Serini S, Piccioni E. N-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr Med Chem 2007;14:3059-69. https://doi.org/10.2174/092986707782793934
  91. Cavazos DA, Price RS, Apte SS, deGraffenried LA. Docosahexaenoic acid selectively induces human prostate cancer cell sensitivity to oxidative stress through modulation of NF-kappaB. Prostate 2011; 71:1420-8. https://doi.org/10.1002/pros.21359
  92. Fahrmann JF, Ballester OF, Ballester G, Witte TR, Salazar AJ, Kordusky B, Cowen KG, Ion G, Primerano DA, Boskovic G, Denvir J, Hardman WE. Inhibition of nuclear factor kappa B activation in early-stage chronic lymphocytic leukemia by omega-3 fatty acids. Cancer Invest 2013;31:24-38.
  93. Ion G, Akinsete JA, Hardman WE. Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring. BMC Cancer 2010;10:81. https://doi.org/10.1186/1471-2407-10-81
  94. Reddy BS. Studies with the azoxymethane-rat preclinical model for assessing colon tumor development and chemoprevention. Environ Mol Mutagen 2004;44:26-35. https://doi.org/10.1002/em.20026
  95. Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst 1995;87:587-92. https://doi.org/10.1093/jnci/87.8.587
  96. Ross JA, Maingay JP, Fearon KC, Sangster K, Powell JJ. Eicosapentaenoic acid perturbs signalling via the NFkappaB transcriptional pathway in pancreatic tumour cells. Int J Oncol 2003;23: 1733-8.
  97. Sauer LA, Dauchy RT, Blask DE. Mechanism for the antitumor and anticachectic effects of n-3 fatty acids. Cancer Res 2000;60:5289-95.
  98. United States Department of Agriculture (US). USDA Nutrient Database, walnut composition [Internet]. Washington, D.C.: United States Department of Agriculture; 2011 [cited 2014 March 14]. Available from: http://ndb.nal.usda.gov/.
  99. Reiter RJ, Manchester LC, Tan DX. Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005;21:920-4. https://doi.org/10.1016/j.nut.2005.02.005
  100. McKay DL, Chen CY, Yeum KJ, Matthan NR, Lichtenstein AH, Blumberg JB. Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: a randomized, cross-over pilot study. Nutr J 2010;9:21. https://doi.org/10.1186/1475-2891-9-21
  101. Hardman WE, Ion G. Suppression of implanted MDA-MB 231 human breast cancer growth in nude mice by dietary walnut. Nutr Cancer 2008;60:666-74. https://doi.org/10.1080/01635580802065302
  102. Hardman WE, Ion G, Akinsete JA, Witte TR. Dietary walnut suppressed mammary gland tumorigenesis in the C(3)1 TAg mouse. Nutr Cancer 2011;63:960-70. https://doi.org/10.1080/01635581.2011.589959

Cited by

  1. Coevolution between Human's Anticancer Activities and Functional Foods from Crop Origin Center in the World vol.16, pp.6, 2015, https://doi.org/10.7314/APJCP.2015.16.6.2119
  2. L.) seed extract in human and murine tumor models in vitro and in a colon-26 tumor-bearing mouse model in vivo vol.4, pp.11, 2015, https://doi.org/10.1002/cam4.520
  3. Whole-Blood Gene Expression Profiles in Large-Scale Epidemiological Studies: What Do They Tell? vol.4, pp.4, 2015, https://doi.org/10.1007/s13668-015-0143-5
  4. Diet, Nutrition, and Cancer Epigenetics vol.36, pp.1, 2016, https://doi.org/10.1146/annurev-nutr-121415-112634
  5. Insights into the relationships between diabetes, prediabetes, and cancer vol.56, pp.2, 2017, https://doi.org/10.1007/s12020-016-1216-y
  6. Association between diet-related inflammation, all-cause, all-cancer, and cardiovascular disease mortality, with special focus on prediabetics: findings from NHANES III vol.56, pp.3, 2017, https://doi.org/10.1007/s00394-016-1158-4
  7. Adolescents’ Food Choice and the Place of Plant-Based Foods vol.7, pp.6, 2015, https://doi.org/10.3390/nu7064619
  8. Prospective association between the Dietary Inflammatory Index and mortality: modulation by antioxidant supplementation in the SU.VI.MAX randomized controlled trial vol.103, pp.3, 2016, https://doi.org/10.3945/ajcn.115.126243
  9. Inflammatory potential of diet and risk of pancreatic cancer in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial vol.142, pp.12, 2018, https://doi.org/10.1002/ijc.31271
  10. Role of diet and gut microbiota on colorectal cancer immunomodulation vol.25, pp.2, 2019, https://doi.org/10.3748/wjg.v25.i2.151
  11. Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37173-7
  12. Coevolution between Cancer Activities and Food Structure of Human Being from Southwest China vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/497934
  13. Omega-3 Polyunsaturated Fatty Acids Intake to Regulate Helicobacter pylori -Associated Gastric Diseases as Nonantimicrobial Dietary Approach vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/712363
  14. New insights into the effects of onion consumption on lipid mediators using a diet-induced model of hypercholesterolemia vol.11, pp.None, 2014, https://doi.org/10.1016/j.redox.2016.12.002
  15. Meta-analysis of the association between the inflammatory potential of diet and colorectal cancer risk vol.8, pp.35, 2014, https://doi.org/10.18632/oncotarget.19233
  16. Dietary Inflammatory Index and Site-Specific Cancer Risk: A Systematic Review and Dose-Response Meta-Analysis vol.9, pp.4, 2018, https://doi.org/10.1093/advances/nmy015
  17. The Dietary Inflammatory Index and All-Cause, Cardiovascular Disease, and Cancer Mortality in the Multiethnic Cohort Study vol.10, pp.12, 2018, https://doi.org/10.3390/nu10121844
  18. Dietary Compounds as Epigenetic Modulating Agents in Cancer vol.10, pp.None, 2019, https://doi.org/10.3389/fgene.2019.00079
  19. Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation vol.18, pp.4, 2014, https://doi.org/10.1007/s11101-019-09627-x
  20. Dietary Inflammatory Index and Its Relationship with Cervical Carcinogenesis Risk in Korean Women: A Case-Control Study vol.11, pp.8, 2014, https://doi.org/10.3390/cancers11081108
  21. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic vol.7, pp.None, 2014, https://doi.org/10.3389/fmed.2020.00444
  22. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management vol.11, pp.4, 2014, https://doi.org/10.1039/d0fo00216j
  23. Acute effects of dietary plant nutrients on transcriptome profiles: evidence from human studies vol.60, pp.11, 2014, https://doi.org/10.1080/10408398.2019.1608154
  24. In vitro differential responses of rat and human aryl hydrocarbon receptor to two distinct ligands and to different polyphenols vol.265, pp.2, 2014, https://doi.org/10.1016/j.envpol.2020.114966
  25. Dietary inflammatory potential in relation to the gut microbiome: results from a cross-sectional study vol.124, pp.9, 2014, https://doi.org/10.1017/s0007114520001853
  26. TNF genetic polymorphism (rs1799964) may modify the effect of the dietary inflammatory index on gastric cancer in a case–control study vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-71433-9
  27. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9965916
  28. Reducing Disease Activity of Inflammatory Bowel Disease by Consumption of Plant-Based Foods and Nutrients vol.8, pp.None, 2014, https://doi.org/10.3389/fnut.2021.733433
  29. The Multifaceted Roles of Diet, Microbes, and Metabolites in Cancer vol.13, pp.4, 2021, https://doi.org/10.3390/cancers13040767
  30. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer vol.26, pp.12, 2014, https://doi.org/10.3390/molecules26123483
  31. Evaluation of phytochemicals and antioxidant activity of gamma irradiated quinoa (Chenopodium quinoa) vol.81, pp.3, 2014, https://doi.org/10.1590/1519-6984.232270
  32. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review vol.22, pp.18, 2014, https://doi.org/10.3390/ijms22189825
  33. Recent advances on the improvement of quercetin bioavailability vol.119, pp.None, 2014, https://doi.org/10.1016/j.tifs.2021.11.032