DOI QR코드

DOI QR Code

Estimating coefficient of consolidation and hydraulic conductivity from piezocone test results - Case studies

  • Hossain, Md. Julfikar (Department of Civil Engineering and Architecture, Saga University) ;
  • Chai, Jinchun (Department of Civil Engineering and Architecture, Saga University)
  • Received : 2013.06.20
  • Accepted : 2014.02.05
  • Published : 2014.06.25

Abstract

The methods for estimating in-situ hydraulic conductivity ($k_{hp}$) and coefficient of consolidation ($c_{hp}$) in the horizontal direction from piezocone penetration and dissipation test results have been investigated using test results at two sites in Saga, Japan. At the two sites the laboratory values of hydraulic conductivity ($k_v$) and coefficient of consolidation ($c_v$) in the vertical direction are also available. Comparing $k_{hp}$ with $k_v$ and $c_{hp}$ with $k_v$ values, suitable methods for estimating $k_{hp}$ and $c_{hp}$ values are recommended. For the two sites, where $k_{hp}{\approx}k_v$ and $c_{hp}{\approx}2c_v$. It is suggested that the estimated values of $k_{hp}$ and $c_{hp}$ can be used in engineering design.

Keywords

References

  1. Arulrajah, A., Nikraz, H. and Bo, M.W. (2005), "In-situ testing of Singapore marine clay at Changi", J. Geotech. Geol. Eng., 23(2), 111-130. https://doi.org/10.1007/s10706-003-7329-0
  2. Arulrajah, A., Bo, M.W., Nikraz, H. and Balasubramaniam, A.S. (2007), "Dissipation testing of Singapore marine clay by piezocone tests", Geotech. Geol. Eng., 25(6), 647-656. https://doi.org/10.1007/s10706-007-9137-4
  3. ASCRDO (2008), Site Investigation Reports, Along the Route of the Saga Section, around Ariake Sea Highway, Saga Japan, Ariake Sea Coastal road Development Office. [In Japanese]
  4. Baligh, M.M. and Levadoux, J.N. (1980), "Pore pressure dissipation after cone penetration", Research Report R80-11, Order No. 662, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, April, pp. 367.
  5. Baligh, M.M. and Levadoux, J.N. (1986), "Consolidation after undrained piezocone penetration. II: interpretation", J. Geotech. Eng., ASCE, 112(7), 727-745. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:7(727)
  6. Burns, S.E. and Mayne, P.W. (1998), "Monotonic and dilatory pore pressure decay during piezocone tests in clay", Can. Geotech. J., 35(6), 1063-1073. https://doi.org/10.1139/t98-062
  7. Campanella, R.G. and Robertson, P.K. (1988), "Current status of the piezocone test", (Ruiter J. Editor), Penetration Testing, Balkema, Rotterdam, Netherlands, 93-116.
  8. Chai, J.-C. and Miura, N. (1999), "Investigation on some factors affecting vertical drain behavior", J. Geotech. Geoenviron. Eng., 125(3), 216-226. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(216)
  9. Chai, J.-C., Carter, J.P., Miura, N. and Hino, T. (2004), "Coefficient of consolidation from piezocone dissipation test", Proceedings of International Symposium on Lowland Technology, ISLT 2004, Bangkok, Thailand, pp. 1-6.
  10. Chai, J.-C., Miura, N. and Koga, H. (2005), "Lateral displacement of ground caused by soil-cement column installation", J. Geotech. Geoenviron. Eng., ASCE, 131(5), 623-632. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(623)
  11. Chai, J.-C, Agung, P.M.A., Hino, T., Igaya, Y. and Carter, J.P. (2011), "Estimating hydraulic conductivity from piezocone soundings", Geotechnique, 61(8), 699-708. DOI: 10,1680/geot.10.P.009 https://doi.org/10.1680/geot.10.P.009
  12. Chai, J.-C., Sheng, D., Carter, J.P. and Zhu, H.-H. (2012a), "Coefficient of consolidation from non-standard piezocone dissipation curves", Comput. Geotech., 41, 13-22. https://doi.org/10.1016/j.compgeo.2011.11.005
  13. Chai, J.-C., Jia, R. and Hino, T. (2012b), "Anisotropic consolidation behavior of Ariake clay from three different CRS tests", Geotech. Test. J., ASTM, 35(6), 1-9. DOI: 10.1520/GTJ103848
  14. Chandler, R.J., Leroueil, S. and Trenter, N.A. (1990), "Measurements of the permeability of London clay using a self boring permeameter", Geotechnique, 40(1), 113-124. https://doi.org/10.1680/geot.1990.40.1.113
  15. Elsworth, D. and Lee, D.S. (2007), "Limits in determining permeability from on-the-fly uCPT Sounding", Geotechnique, 57(8), 769-685. DOI: 10.1680/geot.2007.57.8.769
  16. Jia, R., Chai, J.-C. and Hino, T. (2013), "Interpretation of coefficient of consolidation from CRS test results", Geomech. Eng., Int. J., 5(1), 57-70. https://doi.org/10.12989/gae.2013.5.1.057
  17. Levadoux, J.N. and Baligh, M.M. (1986), "Consolidation after undrained piezocone penetration. I: prediction", J. Geotech Eng, 112(7), 707-726. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:7(707)
  18. Liu, S.Y., Cai, G.J., Tong, L.Y. and Du, G.Y. (2008), "Approach on the engineering properties of lianyungang marine clay from piezocone penetration tests", Marine Georesour. Geotech., 26(3), 189-221. https://doi.org/10.1080/10641190802265994
  19. Lunne, T., Robertson, P.K. and Powell, J.J.M. (1997), Cone Penetration Testing in Geotechnical Practice, London, UK, E & FN Spon.
  20. Miura, N., Chai, J.-C., Hino, T. and Shimoyama, S. (1998), "Depositional environment and geotechnical properties of soft deposit in Saga plain", Indian Geotech. J., 28(2), 121-146.
  21. Park, Y.M. (1994), "A research on the mechanical properties of lowland marine clay and vertical drain improvement method", Ph.D. Dissertation, University of Saga, Japan.
  22. Robertson, P.K. (2010), "Estimating in-situ soil permeability from CPT and CPTu", 2nd International Symphosium on Cone Penetration Testing, Huntington Beach, CA, USA, pp. 2-43.
  23. Robertson, P.K., Sully, J.P., Woeller, D.J., Lunne, T., Powell, J.J.M. and Gillespie, D.G. (1992), "Estimating coefficient of consolidation from piezocone tests", Can. Geotech. J., 29(4), 539-550. https://doi.org/10.1139/t92-061
  24. Samui, P. and Sitharam, T.G. (2010), "Design of piezovibro cone and calibration chamber", Geomech. Eng., Int. J., 2(3), 177-190. https://doi.org/10.12989/gae.2010.2.3.177
  25. Senneset, K. and Janbu, N. (1985), "Shear strength parameters obtained from static cone penetration tests", Strength Testing of Marine Sediments, Laboratory and In-Situ Measurements, ASTM STP 883, (R.C. Chaney and K.R. Demars, Eds.), American Society for Testing and Materials, PA, USA, pp. 41-54.
  26. Song, C.R. and Pulijala, S. (2010), "Hydraulic property estimation using piezocone results", J. Geotech. Geoenviron. Eng., ASCE, 136(3), 456-463. https://doi.org/10.1061/(ASCE)1090-0241(2010)136:3(456)
  27. Sully, J.P., Robertson, P.K., Campanella, R.G. and Woeller, D.J. (1999), "An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils", Can. Geotech. J., 36(2), 369-381. https://doi.org/10.1139/t98-105
  28. Teh, C.I. and Houlsby, G.T. (1991), "An analytical study of the cone penetration test in clay", Geotechnique, 41(1), 17-34. https://doi.org/10.1680/geot.1991.41.1.17
  29. Wang, J.-P., Xu, Y.-S., Ma, L. and Shen, S.-L. (2013), "An approach to evaluate hydraulic conductivity of soil based on CPTU test", Marine Georesour. Geotech., 31(3), 242-253. https://doi.org/10.1080/1064119X.2012.676154