참고문헌
- Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by Hamiltonian approach", J. Vibroeng., 13(4), 654-661.
- Bayat, M. and Pakar, I. (2011b), "Application of He's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
- Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
- Bayat, M., Pakar, I. and Domaiirry, G. (2012a), "Recent developments of Some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Lat. Am. J. Solid. Struct., 9(2),145-234.
- Bayat, M. and Pakar, I. (2012b), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Bayat, M., Pakar, I. and Bayat, M. (2013a), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
- Bayat, M. and Pakar, I. (2013b), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
- Bayat, M. and Pakar, I. (2013c), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
- Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: an analytical approach", Mech. Mach. Theor., 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
- Bayat, M., Pakar, I. and Cveticanin, L.(2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
- Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Lat. Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
- Belendez, A., Hernandez, A., Belendez, T., Neipp, C. and Marquez, A. (2008), "Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method", Phys. Let. A, 372(12), 2010-2016. https://doi.org/10.1016/j.physleta.2007.10.081
- Fu, Y., Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Cur. Appl. Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037
- Ganji, D.D., Gorji, M., Soleimani, S. and Esmaeilpour, M. (2009), "Solution of nonlinear cubic-quintic Duffing oscillators using He's Energy Balance Method", J. Zhejiang Univ.-Sci. A, 10(9), 1263-1268. https://doi.org/10.1631/jzus.A0820651
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Let. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- Kaya, M. and Demirbag, S.A. (2009), "Application of parameter expansion method to the generalized nonlinear discontinuity equation", Chaos, Soliton. Fract., 42(4), 967-197.
- Nayfeh, A.H. (1973), Perturbation Methods, Wiley Online Library.
- Pakar, I. and Bayat, M. (2011a), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
- Pakar, I., Bayat, M. and Bayat, M. (2012a), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
- Pakar, I. and Bayat, M. (2012b), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
- Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
- Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
- Pirbodaghi, T. and Hoseini, S. (2010), "Nonlinear free vibration of a symmetrically conservative two-mass system with cubic nonlinearity", J. Comput. Nonlin. Dyn., 5(1), 011006.
- Ren, Z.F. and Gui, W.K. (2011), "He's frequency formulation for nonlinear oscillators using a golden mean location", Comput. Math. Appl., 61(8), 1987-1990. https://doi.org/10.1016/j.camwa.2010.08.047
- Shou, D.H. (2009), "The homotopy perturbation method for nonlinear oscillators", Comput. Math. Appl., 58(11-12), 2456-2459. https://doi.org/10.1016/j.camwa.2009.03.034
- Wazwaz, A.M. (2007), "The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations", Comput. Math. Appl., 54(7-8), 933-939. https://doi.org/10.1016/j.camwa.2006.12.039
- Zeng, D.Q. (2009), "Nonlinear oscillator with discontinuity by the max-min approach", Chaos, Soliton. Fract., 42(5), 2885-2889. https://doi.org/10.1016/j.chaos.2009.04.029
피인용 문헌
- A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
- Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
- Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
- High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129