DOI QR코드

DOI QR Code

An accurate novel method for solving nonlinear mechanical systems

  • Bayat, Mahdi (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University) ;
  • Pakar, Iman (Young Researchers and Elites Club, Mashhad Branch, Islamic Azad University) ;
  • Bayat, Mahmoud (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University)
  • Received : 2013.09.05
  • Accepted : 2014.06.20
  • Published : 2014.08.10

Abstract

This paper attempts to investigate the nonlinear dynamic analysis of strong nonlinear problems by proposing a new analytical method called Hamiltonian Approach (HA). Two different cases are studied to show the accuracy and efficiency of the method. This approach prepares us to obtain the nonlinear frequency of the nonlinear systems with the first order of the solution with a high accuracy. Finally, to verify the results we present some comparisons between the results of Hamiltonian approach and numerical solutions using Runge-Kutta's [RK] algorithm. This approach has a powerful concept and the high accuracy, so it can be apply to any conservative nonlinear problems without any limitations.

Keywords

References

  1. Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by Hamiltonian approach", J. Vibroeng., 13(4), 654-661.
  2. Bayat, M. and Pakar, I. (2011b), "Application of He's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
  3. Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
  4. Bayat, M., Pakar, I. and Domaiirry, G. (2012a), "Recent developments of Some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Lat. Am. J. Solid. Struct., 9(2),145-234.
  5. Bayat, M. and Pakar, I. (2012b), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  6. Bayat, M., Pakar, I. and Bayat, M. (2013a), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
  7. Bayat, M. and Pakar, I. (2013b), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
  8. Bayat, M. and Pakar, I. (2013c), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  9. Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: an analytical approach", Mech. Mach. Theor., 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
  10. Bayat, M., Pakar, I. and Cveticanin, L.(2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
  11. Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Lat. Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
  12. Belendez, A., Hernandez, A., Belendez, T., Neipp, C. and Marquez, A. (2008), "Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method", Phys. Let. A, 372(12), 2010-2016. https://doi.org/10.1016/j.physleta.2007.10.081
  13. Fu, Y., Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Cur. Appl. Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037
  14. Ganji, D.D., Gorji, M., Soleimani, S. and Esmaeilpour, M. (2009), "Solution of nonlinear cubic-quintic Duffing oscillators using He's Energy Balance Method", J. Zhejiang Univ.-Sci. A, 10(9), 1263-1268. https://doi.org/10.1631/jzus.A0820651
  15. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  16. He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Let. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
  17. Kaya, M. and Demirbag, S.A. (2009), "Application of parameter expansion method to the generalized nonlinear discontinuity equation", Chaos, Soliton. Fract., 42(4), 967-197.
  18. Nayfeh, A.H. (1973), Perturbation Methods, Wiley Online Library.
  19. Pakar, I. and Bayat, M. (2011a), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
  20. Pakar, I., Bayat, M. and Bayat, M. (2012a), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
  21. Pakar, I. and Bayat, M. (2012b), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
  22. Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
  23. Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  24. Pirbodaghi, T. and Hoseini, S. (2010), "Nonlinear free vibration of a symmetrically conservative two-mass system with cubic nonlinearity", J. Comput. Nonlin. Dyn., 5(1), 011006.
  25. Ren, Z.F. and Gui, W.K. (2011), "He's frequency formulation for nonlinear oscillators using a golden mean location", Comput. Math. Appl., 61(8), 1987-1990. https://doi.org/10.1016/j.camwa.2010.08.047
  26. Shou, D.H. (2009), "The homotopy perturbation method for nonlinear oscillators", Comput. Math. Appl., 58(11-12), 2456-2459. https://doi.org/10.1016/j.camwa.2009.03.034
  27. Wazwaz, A.M. (2007), "The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations", Comput. Math. Appl., 54(7-8), 933-939. https://doi.org/10.1016/j.camwa.2006.12.039
  28. Zeng, D.Q. (2009), "Nonlinear oscillator with discontinuity by the max-min approach", Chaos, Soliton. Fract., 42(5), 2885-2889. https://doi.org/10.1016/j.chaos.2009.04.029

Cited by

  1. A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
  2. Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
  3. Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
  4. High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129