References
- ACI Committee 363 R (1997), "State-of-the-art report on high-strength concrete", Farmington Hills, American Concrete Institute, USA.
- Audenaert, K. (2006), "Transport mechanismen in zelfverdichtend beton in relatie met carbonatatie en chloride penetratie", PhD Thesis, Ghent, Ghent University.
- Bartos, P.J.M. (1999), "Self-compacting concrete", Concrete, 3(4), 9-14.
- Bleszynski, R.F., Hooton, R.D., Thomas, M.D.A. and Rogers, C.A. (2002), "Durability of ternary blend concretes with silica fume and blast furnace slag: laboratory and outdoor exposure site studies", ACI Mater. J., 99, 499-508.
- Bouzoubaa, N. and Lachemi, M. (2001), "Self-compacting concrete incorporating high volumes of class F fly ash-preliminary results", Cement Concrete Res., 31, 413-20. https://doi.org/10.1016/S0008-8846(00)00504-4
- Collepardi, M., Collepardi, S., Ogoumah Olagat, J.J. and Troli, R. (2003), "Laboratory-test and filledexperience SCC's", Proceedings of the 3rd international symposium on self compacting concrete, Reykjavik, Iceland, August.
- El-Dieb, A.S. (2009), "Mechanical, durability and microstructural characteristics of ultra-high-strength selfcompacting concrete incorporating steel fibers", Mater. Des., 30(10), 4286-4292. https://doi.org/10.1016/j.matdes.2009.04.024
- Jalal, M., Fathi, M. and Farzad, M. (2013), "Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete", Mech. Mater., 61, 11-27. https://doi.org/10.1016/j.mechmat.2013.01.010
-
Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing
$SiO_{2}$ micro and nanoparticles", Mater. Des., 34, 389-400. https://doi.org/10.1016/j.matdes.2011.08.037 -
Jalal, M., Ramezanianpour, A.A. and Khazaei Pool, M. (2013), "Split tensile strength of binary blended self compacting concrete containing low volume fly ash and
$TiO_{2}$ nanoparticles", Compos. Part B: Eng., 55, 324-337 https://doi.org/10.1016/j.compositesb.2013.05.050 -
Ji, T. (2005), "Preliminary study on the water permeability and microstructure of concrete incorporating nano-
$SiO_{2}$ ", Cement Concrete Res., 35, 1943-7. https://doi.org/10.1016/j.cemconres.2005.07.004 -
Jo, B.W., Kim, C.H. and Tae, G.H. (2007), "Characteristics of cement mortar with nano-
$SiO_{2}$ particles", Construct. Build. Mater., 21, 1351-5. https://doi.org/10.1016/j.conbuildmat.2005.12.020 - Kay, T. (1992), Assessment & Renovation of Concrete Structure, Longman scientific and Technical Publication.
- Kulakowski, M.P., Pereira, F.M. and Dal Molin, D.C.C. (2009), "Carbonation induced reinforcement corrosion in silica fume concrete", Construct. Build. Mater., 23, 11897-1195.
-
Lin, K.L., Chang, W.C. and Lin, D.F. (2008), "Effects of nano-
$SiO_{2}$ and different ash particle sizes on sludge ash-cement mortar", J. Environ. Manage., 88, 708-14. https://doi.org/10.1016/j.jenvman.2007.03.036 - Mays, G. (1992), Durability of Concrete Structure, Investigation, Repair, Protection, E & FN Spon Publication.
- McCarter, J.W., Forde, M.C. and Whittington, M.W. (1981), "Resistivity characteristics of concrete", Proceeding of Institution of civil Engineers, Part 2, 71, March.
- Okamura, H.M. and Ouchi, M. (2003), "Self-compacting concrete", J. Adv. Concrete Technol., 1(1), 5-15. https://doi.org/10.3151/jact.1.5
- Perraton, D., Aitcin, P.C. and Carles-Gbergues, A. (1994), Permeability, as seen by the researcher, Ed. Malier, Y., High Performance Concrete: From Material to Structure, E & FN Spon, London, UK.
-
Qing, Y., Zenan, Z. and Deyu, K. (2007), "Influence of nano-
$SiO_{2}$ addition on properties of hardened cement paste as compared with silica fume", Construct. Build. Mater., 21, 539-45. https://doi.org/10.1016/j.conbuildmat.2005.09.001 - Siddique, R. (2011), "Properties of self-compacting concrete containing class F fly ash", Mater. Des., 32 (3), 1501-1507. https://doi.org/10.1016/j.matdes.2010.08.043
- Ye, G., Lura, P. and van Breugel, K. (2006), "Modeling of water permeability in cementitious materials", Mater. Struct., 39, 877-885. https://doi.org/10.1617/s11527-006-9138-4
Cited by
- Fracture energy and tension softening relation for nano-modified concrete vol.54, pp.6, 2015, https://doi.org/10.12989/sem.2015.54.6.1201
- Enhancing the permeability and abrasion resistance of concrete using colloidal nano-SiO 2 oxide and spraying nanosilicon practices vol.146, 2017, https://doi.org/10.1016/j.conbuildmat.2017.04.078
- Assessment of strength and durability of bagasse ash and Silica fume concrete vol.17, pp.6, 2016, https://doi.org/10.12989/cac.2016.17.6.801
- The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars vol.150, 2017, https://doi.org/10.1016/j.conbuildmat.2017.06.054
- Effect of specimen geometry and specimen preparation on the concrete compressive strength test vol.62, pp.1, 2014, https://doi.org/10.12989/sem.2017.62.1.097
- Big data in nanocomposites: ONN approach and mesh-free method for functionally graded carbon nanotube-reinforced composites vol.6, pp.2, 2019, https://doi.org/10.1016/j.jcde.2018.05.003
- Nanotechnology in Cement-Based Materials: A Review of Durability, Modeling, and Advanced Characterization vol.9, pp.9, 2019, https://doi.org/10.3390/nano9091213
- Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire vol.72, pp.3, 2014, https://doi.org/10.12989/sem.2019.72.3.339
- RETRACTED: Application of adaptive neuro-fuzzy inference system for strength prediction of rubberized concrete containing silica fume and zeolite vol.234, pp.3, 2014, https://doi.org/10.1177/1464420719890370
- Hybrid-fibre-reinforced concrete containing multi-wall carbon nanotubes vol.173, pp.9, 2014, https://doi.org/10.1680/jstbu.18.00180