DOI QR코드

DOI QR Code

Optimum design of axially symmetric cylindrical reinforced concrete walls

  • 투고 : 2013.09.05
  • 심사 : 2014.03.20
  • 발행 : 2014.08.10

초록

The main aim of this paper is to investigate the relationship between thickness and height of the axially symmetric cylindrical reinforced concrete (RC) walls by the help of a meta-heuristic optimization procedure. The material cost of the wall which includes concrete, reinforcement and formwork, was chosen as objective function of the optimization problem. The wall thickness, compressive strength of concrete and diameter of reinforcement bars were defined as design variables and tank volume, radius and height of the wall, loading condition and unit cost of material were defined as design constants. Numerical analyses of the wall were conducted by using superposition method (SPM) considering ACI 318-Building code requirements for structural concrete. The optimum wall thickness-height relationship was investigated under three main cases related with compressive strength of concrete and density of the stored liquid. According to the results, the proposed method is effective on finding the optimum design with minimum cost.

키워드

참고문헌

  1. ACI 318M-05 (2005), Building code requirements for structural concrete and commentary, American Concrete Institute.
  2. Adidam, S.R. and Subramanyam, A.V. (1982), "Optimum design of reinforced concrete water tanks", J. Struct. Div. ASCE, 108, 1219-31.
  3. Afshar, A., Haddad, O.B., Mario, M.A. and Adams, B.J. (2007), "Honey-bee mating optimization (hbmo) algorithm for optimal reservoir operation", J. Franklin. Inst., 344(5), 452-462. https://doi.org/10.1016/j.jfranklin.2006.06.001
  4. Ansary, A.M., Damatty, A.A. and Nassef, O. (2011), "A coupled finite element genetic algorithm for optimum design of stiffened liquid-filled steel conical tanks", Thin Wall. Struct., 49, 482-493. https://doi.org/10.1016/j.tws.2010.12.006
  5. Baek, C.W., Jun, H.D. and Kim, J.H. (2010), "Development of a PDA Model For Water Distribution Systems Using Harmony Search Algorithm", KSCE J. Civil Eng., 14(4), 613-625. https://doi.org/10.1007/s12205-010-0613-7
  6. Barakat, S.A. and Altoubat, S. (2009), "Application of evolutionary global optimization techniques in the design of RC water tanks", Eng. Struct., 31(2), 332-44. https://doi.org/10.1016/j.engstruct.2008.09.006
  7. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33, 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024
  8. Bekdas, G. and Nigdeli, S.M. (2012), "Metaheuristic algorithms in structural dynamics: an application of tuned mass damper optimization", AIP Conf. Proc. 10th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), Kos, Greece, September.
  9. Billington, D.P. (1965), Thin Shell Structures, McGraw-Hill, New York.
  10. Calladine, C.R. (1983), Theory of Shell Structures, Cambridge Press, New York.
  11. Degertekin, S.O. (2008), "Harmony search algorithm for optimum design of steel frame structures: A comparative study with other optimization methods", Struct. Eng. Mech., 29(4), 391-410. https://doi.org/10.12989/sem.2008.29.4.391
  12. Degertekin, S.O., Hayalioglu, M.S. and Gorgun, H. (2009), "Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm", Steel Compos. Struct., 9(6), 535-555. https://doi.org/10.12989/scs.2009.9.6.535
  13. Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Tran. Syst. Man Cyber. B, 26, 29-41. https://doi.org/10.1109/3477.484436
  14. Erdal, F. and Saka, M.P. (2009), "Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC", Struct. Multidiscip. O., 38, 25-41. https://doi.org/10.1007/s00158-008-0263-2
  15. Erdal, F., Dogan, E. and Saka MP (2011), "Optimum Design of Cellular Beams Using Harmony Search And Particle Swarm Optimizers", J. Constr. Steel Res., 67(2), 237-247. https://doi.org/10.1016/j.jcsr.2010.07.014
  16. Erol, O.K. and Eksin, I. (2006), "A new optimization method: Big bang big crunch", Adv.Eng. Softw., 37,106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
  17. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76, 60-68. https://doi.org/10.1177/003754970107600201
  18. Geem, Z.W. (2009), "Harmony search optimisation to the pump-included water distribution network design", Civil Eng. Environ. Syst., 26(3), 211-221. https://doi.org/10.1080/10286600801919813
  19. Geem, Z.W. (2010), "Multiobjective optimization of time-cost trade-off using harmony search", J. Constr. Eng. M., ASCE, 136(6), 711-716. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000167
  20. Geem, Z.W. (2011), "Parameter estimation of the nonlinear muskingum model using parameter-setting-free harmony search", J. Hydrol. Eng., 16(8), 684-688. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000352
  21. Geem, Z.W. and Cho, Y.H. (2011), "Optimal design of water distribution networks using parameter-settingfree harmony search for two major parameters", J. Water Res. Pl., ASCE, 137(4), 377-380. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000130
  22. Ghali, A. (1979), Circular Storage Tanks and Soils, Spon Ltd, London.
  23. Gholizadeh, R., Amiri, G.G. and Mohebi, B. (2010), "An alternative approach to a harmony search algorithm for a construction site layout problem", Can. J. Civil Eng., 37(12), 1560-1571. https://doi.org/10.1139/L10-084
  24. Goldberg, D.E. (1989), Genetic algorithms in search, Optimization and machine learning, Addison Wesley, Boston, MA.
  25. Hasancebi, O. (2009), "Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures", Comput. Struct., 87, 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002
  26. Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Comput. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006
  27. Hetenyi, M. (1936), "Analysis of bars on elastic foundation", Final Report of the Second International Congress for Bridge and Structural Engineering, Verlag von Wilhelm Ernst and Son, Berlin- Munich.
  28. Hetenyi, M. (1967), Beams on Elastic Foundation, University of Michigan Press, Ann Arbor, MI.
  29. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
  30. Karaboga, D. (2005), An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Computer Engineering Department, Engineering Faculty, Erciyes University.
  31. Kaveh, A., Abadi, A. and Shakouri, M. (2010), "Cost optimization of a composite floor system using an improved harmony search algorithm", J. Constr. Steel Res., 66(5), 664-669. https://doi.org/10.1016/j.jcsr.2010.01.009
  32. Kaveh, A., Abadi, A. and Shakouri, M. (2011), "Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls", Int. J. Civil Eng., 9(1), 1-8.
  33. Kaveh, A. and Sabzi, O. (2011), "A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames", Int. J. Civil Eng., 9(3), 193-206.
  34. Kelkar, V.S. and Sewell, R.T. (1987), Fundamentals of the Analysis and Design of Shell Structures, Englewood Cliffs, Prentice-Hall, NJ.
  35. Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks No. IV, Perth, November-December.
  36. Kirkpatrick, S., Gelatt, C. and Vecchi, M. (1983), "Optimization by simulated annealing", Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671
  37. Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82,781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
  38. Lee, J.H. and Yoon, Y.S. (2007), "Modified harmony search algorithm and neural Networks for Concrete Mix Proportion Design", ASCE Int. Workshop Comput. Civil Eng., 23(1), 57-61.
  39. Mun, S. and Lee, S. (2011), "Identification of Viscoelastic Functions for Hot-Mix Asphalt Mixtures Using a Modified Harmony Search Algorithm", J. Comput. Civil Eng., 25(2), 139-148. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000078
  40. Nigdeli, S.M. and Bekdas, G. (2012), "Investigation of Earthquake Factor for Optimum Tuned Mass Dampers", AIP Conf. Proc. 10th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), Kos, Greece, September.
  41. Nakrani, S. and Tovey, C. (2004), "On honey bees and dynamic allocation in an internet server colony", Adapt. Behav., 12(3-4), 223-240. https://doi.org/10.1177/105971230401200308
  42. Saka, M.P. (2007), "Optimum geometry design of geodesic domes using harmony search algorithm", Adv. Struct. Eng., 10(6), 595-606. https://doi.org/10.1260/136943307783571445
  43. Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm", J. Constr. Steel Res., 65, 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
  44. Saxena, M., Sharma, S.P. and Mohan, C. (1987), "Cost optimization of Intze tanks on shafts using nonlinear programming", Eng. Optim., 10 NJ 279-288. https://doi.org/10.1080/03052158708902543
  45. Suh, Y., Mun, S. and Yeo, I. (2010), "Fatigue Life Prediction Of Asphalt Concrete Pavement Using A Harmony Search Algorithm", KSCE J. Civil Eng., 14(5), 725-730. https://doi.org/10.1007/s12205-010-0906-x
  46. Tan, G.H., Thevendran, V., Das Gupta, N.C. and Thambiratnam, D.P. (1993), "Design of reinforced concrete cylindrical water tanks for minimum material cost", Comput. Struct., 48(5), 803-810. https://doi.org/10.1016/0045-7949(93)90501-4
  47. Thevendran, V. and Thambiratnam, D.P. (1988), "Minimum weight design of conical concrete water tanks", Comput. Struct., 29, 669-704.
  48. Thevendran, V. (1993), "Design of reinforced concrete cylindrical water tanks for minimum material cost", Comput. Struct., 48(5), 803-10. https://doi.org/10.1016/0045-7949(93)90501-4
  49. Timoshenko, S.P. and Young, D.H. (1962), Strength of Materials, 4th Edition-Part II, D. Van Nostrand Company, New Jersey.
  50. Timoshenko, S.P. and Woinowsky-Krieger, S. (1984), Theory of Plates and Shells, 2nd Edition, McGraw-Hill, New .
  51. Togan, V., Daloglu, A.T. and Karadeniz, H. (2011), "Optimization of trusses under uncertainties with harmony search", Struct. Eng. Mech., 37(5), 543-560. https://doi.org/10.12989/sem.2011.37.5.543
  52. Toklu, Y.C. (2004), "Nonlinear analysis of trusses through energy minimization", Comput. Struct., 82,1581-1589. https://doi.org/10.1016/j.compstruc.2004.05.008
  53. Ventsel, E. and Krauthammer, T. (2001), Thin Plates and Shells: Theory, Analysis and Applications, Marcel Dekker Inc., New York.
  54. Yang, X.S. (2005), "Engineering optimizations via nature-inspired virtual bee algorithms", Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, LNCS, 3562, 317-323
  55. Yang, X.S. (2008), Nature-Inspired Metaheuristic Algorithms, Luniver Press, U.K.
  56. Yang, X.S. and Gandomi, A.H. (2012), "Bat algorithm: a novel approach for global engineering optimization", Eng. Comput., 29(5), 464-483. https://doi.org/10.1108/02644401211235834

피인용 문헌

  1. Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction vol.92, 2017, https://doi.org/10.1016/j.soildyn.2016.10.019
  2. New improved metaheuristic approaches for optimum design of posttensioned axially symmetric cylindrical reinforced concrete walls 2018, https://doi.org/10.1002/tal.1461
  3. A novel harmony search based optimization of reinforced concrete biaxially loaded columns vol.54, pp.6, 2015, https://doi.org/10.12989/sem.2015.54.6.1097
  4. Optimum reduction of flexural effect of axially symmetric cylindrical walls with post-tensioning forces 2018, https://doi.org/10.1007/s12205-017-1870-5
  5. Optimum design of post-tensioned axially symmetric cylindrical walls using novel hybrid metaheuristic methods pp.15417794, 2018, https://doi.org/10.1002/tal.1550
  6. Effects of Constant Parameters on Optimum Design of Axially Symmetric Cylindrical Reinforced Concrete Walls vol.30, pp.6, 2014, https://doi.org/10.1002/tal.1838