DOI QR코드

DOI QR Code

러프집합 이론을 이용한 러프 엔트로피 기반 지식감축

Rough Entropy-based Knowledge Reduction using Rough Set Theory

  • 박인규 (중부대학교 컴퓨터학과)
  • 투고 : 2014.03.03
  • 심사 : 2014.06.20
  • 발행 : 2014.06.28

초록

대용량의 지식베이스 시스템에서 유용한 정보를 추출하여 효율적인 의사결정을 수행하기 위해서는 정제된 특징추출이 필수적이고 중요한 부분이다. 러프집합이론에 있어서 최적의 리덕트의 추출과 효율적인 객체의 분류에 대한 문제점을 극복하고 자, 본 연구에서는 조건 및 결정속성의 효율적인 특징추출을 위한 러프엔트로피 기반 퀵리덕트 알고리듬을 제안한다. 제안된 알고리듬에 의해 유용한 특징을 추출하기 위한 조건부 정보엔트로피를 정의하여 중요한 특징들을 분류하는 과정을 기술한다. 또한 본 연구의 적용사례로써 실제로 UCI의 5개의 데이터에 적용하여 특징을 추출하는 시뮬레이션을 통하여 본 연구의 모델링이 기존의 방법과 비교결과, 제안된 방법이 효율성이 있음을 보인다.

In an attempt to retrieve useful information for an efficient decision in the large knowledge system, it is generally necessary and important for a refined feature selection. Rough set has difficulty in generating optimal reducts and classifying boundary objects. In this paper, we propose quick reduction algorithm generating optimal features by rough entropy analysis for condition and decision attributes to improve these restrictions. We define a new conditional information entropy for efficient feature extraction and describe procedure of feature selection to classify the significance of features. Through the simulation of 5 datasets from UCI storage, we compare our feature selection approach based on rough set theory with the other selection theories. As the result, our modeling method is more efficient than the previous theories in classification accuracy for feature selection.

키워드

참고문헌

  1. J. W. Grzymala-Busse, "LERS-a System for learning from examples based on rough sets", in Intellegent Decision Support, Kruwer Academic Publishers, pp. 3-18, 1992.
  2. M. Dashand and H Liu, "Feature selection for classification", Intelligent Data Analysis, Vol. 1, No. 3, pp. 131-156, 1997. https://doi.org/10.1016/S1088-467X(97)00008-5
  3. M. Dash and H. Liu, "Unsupervised feature selction", in Proc. of the Pacific and Asia Conf. on Knowledge Discovery and Data Mining, Kyoto, pp. 110-121, 2000.
  4. C. Velayutham and K. Thangaval, "Unsupervised Quick Reduct Algorithm using Rough Set Theory", Jouranl of Electronic Seience and Technology Vol. 9, No. 3, pp. 193-201, 2011.
  5. S. K. Das, "Feature selection with a linear dependence measure", IEEE Trans. on Computers, Vol. 20, No. 9, pp. 1106-1109, 1971.
  6. Lin Sun, "Decision Table Reduction Method Based on New Conditional Entropy for Rough Set theory", International Workshop on Intelligent Systems and Applications, pp. 23-24, May 2009
  7. Baoxiang Liu, Ying Li, Lihong Li, Yaping Yu, "An Approximate Reduction Algorithm Based on Conditional Entropy", Information Computing and Applications, Vol. 106, pp. 319-32, 2010 https://doi.org/10.1007/978-3-642-16339-5_42
  8. Zhangyan Xu, Jianhua Zhou, Chenguang Zhang, "A Quick Attribute Reduction Algorithm Based on Incomplete Decision Table", Information Computing and Applications, Vol. 391, pp. 499-508, 2013 https://doi.org/10.1007/978-3-642-53932-9_49
  9. K. Thankaveland A. Pethalakshmi, "Dimensionality reduction based on rough set theory: a Review", Applied Soft Computing, Vol. 9, No. 1, pp. 1-12, 2009. https://doi.org/10.1016/j.asoc.2008.05.006
  10. J. Han, X. Hu and T.-Y. Lin, "Feature sebset selection based on relative dependency between attributes", in Proc. of the 4th International Conf. on Rough Sets and Current Trends in Computing, Uppsala, pp. 176-185, 2004.