DOI QR코드

DOI QR Code

Variation of Lignan Content for Sesame Seed Across Origin and Growing Environments

참깨 원산지 및 재배지역에 따른 리그난 함량 변이

  • 김성업 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 오기원 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 이명희 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 이병규 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 배석복 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 황정동 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 김명식 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 백인열 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 이정동 (경북대학교)
  • Received : 2014.03.16
  • Accepted : 2014.03.28
  • Published : 2014.06.30

Abstract

Sesame lignan, including sesamin and sesamolin has been reported to have various content according to accessions and environmental factors. The objective of this study were to analyze the lignan variation of 143 sesame accessions from core collection in Korea and to test the effects of growing years and locations on lignan and lipid content of Korea sesame elite lines. The results showed that the core sesame germplasm in Korea has broad variation of lignan content from 2.33 to 12.17 mg/g with an average 8.18 mg/g. Among tested sesame accessions, the IT184615 had the highest lignan content of as 12.17 mg/g. So this accession will be a good genetic resource for developing a high lignan sesame variety. The sesamin and sesamolin content for sesame accessions across origin had significant difference. The average lignan content of accessions collected from Russia (10.0 mg/g) and Nepal (9.08 mg/g) were relatively higher than other countries. The sesamin and sesamolin content for sesame accessions across seed coat color had significant difference. The average lignan content of sesame with white, brown and black seed coat color was 8.61, 7.51, and 5.49 mg/g, respectively. The variation of lignan and lipid content was significantly different across elite lines, locations and growing years. Therefore, it is important to find sesame accessions having high lignan content with environmental stability.

본 연구는 참깨 유전자원 핵심집단과 주요 품종 및 우량계통의 세사민과 세사몰린, 지방 함량변이를 분석하여 리그난 함량이 높은 참깨 품종육성을 위한 기초자료로 활용하고자 하였다. 본 시험에 이용된 참깨 유전자원 143점의 리그난 함량 범위는 2.33 mg/g에서 12.17 mg/g으로 나타났다. 그 중 터키에서 수집된 IT184615은 리그난 함량이 12.17 mg/g으로 가장 높아 리그난 함량 개량을 위한 유전자원으로 활용성이 높은 것으로 판단되었다. 참깨 유전자원을 14개의 수집원산지별, 4개의 종피색(백, 황, 갈, 흑)별, 4개의 SSR마커그룹으로 분류하고 리그난 함량과의 유의성을 검정한 결과 세사민, 세사몰린 함량은 수집원산지, 종피색 간에 유의한 차가 인정되었다. 러시아(10.0 mg/g), 네팔(9.08 mg/g)에서 수집된 유전자원은 다른 국가에서 수집된 유전자원보다 평균 리그난 함량이 높았다. 세사민 함량은 세사몰린 함량과 정의 상관관계가 있어 리그난 함량이 높은 참깨 품종 육성을 위해서는 두 성분을 동시에 높이는 방향으로 선발되어야 할 것으로 판단된다. 참깨 주요 품종과 우량계통의 리그난, 지방 함량의 지역간, 연차간 변이를 분석하여 품질특성에 미치는 환경의 영향을 분석한 결과 리그난과 지방 함량은 지역간, 연차간에 고도로 유의적인 차이가 인정되었고 지역간 변이가 계통 간 변이보다 커서 유전변이보다 환경변이의 변이의 폭이 넓었다. 따라서 리그난, 지방 함량이 높은 참깨 품종 육성을 위해서는 함량이 높은 유전자원을 육종재료로 활용함과 동시에 리그난 축적에 관계되는 재배환경에 관한 연구가 지속적으로 이루어져야 할 것이다.

Keywords

References

  1. Ashri, A. 1998. Sesame breeding. Plant breeding reviews. 16 : 179-228.
  2. El-Bramawy, M. A. E. S., S. E. S. El-Hendawy, and W. I. A. Shaban. 2008. Accessing the suitability of morphological and phenological traits to screen sesame genotypes for fusarium wilt and charcoal rot disease resistance. Journal of Plant Protection Research. 48(4) : 397-410.
  3. Food and Agriculture Organization of the United Nations (FAO). 2012.
  4. Fukuda, Y., M. Nagata, T. Osawa, and M. Namiki. 1986. Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. Journal of the American Oil Chemists' Society. 63(8) : 1027-1031. https://doi.org/10.1007/BF02673792
  5. Fukuda, Y., T. Osawa, M. Namiki, and T. Ozaki. 1985. Studies on antioxidative substances in sesame seed. Agricultural and Biological Chemistry. 49(2) : 301-306. https://doi.org/10.1271/bbb1961.49.301
  6. Hanzawa, F., S. Nomura, E. Sakuma, T. Uchida, and S. Ikeda. 2013. Dietary sesame seed and its lignan, sesamin, increase tocopherol and phylloquinone concentrations in male rats. The Journal of Nutrition. 143(7): 1067-1073. https://doi.org/10.3945/jn.113.176636
  7. Hata, N., Y. Hayashi, A. Okazawa, E. Ono, H. Satake, and A. Kobayashi. 2010. Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Science. 178(6) : 510-516. https://doi.org/10.1016/j.plantsci.2010.02.020
  8. Hata, N., Y. Hayashi, A. Okazawa, E. Ono, H. Satake, and A. Kobayashi. 2012. Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environmental and Experimental Botany. 75 : 212-219. https://doi.org/10.1016/j.envexpbot.2011.07.004
  9. Ide, T., L. Ashakumary, Y. Takahashi, M. Kushiro, N. Fukuda, and M. Sugano. 2001. Sesamin, a sesame lignan, decreases fatty acid synthesis in rat liver accompanying the downregulation of sterol regulatory element binding protein-1. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1534(1) : 1-13. https://doi.org/10.1016/S1388-1981(01)00167-6
  10. Ide, T., N. Fukuda, T. Aoyama, and T. Hashimoto. 1999. Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism. 48(10) : 1303-1313. https://doi.org/10.1016/S0026-0495(99)90272-X
  11. Kang, C. S., K. H. Kim, S. H. Shin, J. H. Son, J. N. Hyun, K. H. Kim, and C. S. Park. 2013. Influence of cultivar and environment on arabinoxylan content in Korean wheat. Korean Journal of Breeding Science. 45(2) : 81-95.
  12. Kanu, P. J. 2011. Biochemical analysis of black and white sesame seeds from China. Am. J. Biochem. Mol. Biol. 1 : 145-157. https://doi.org/10.3923/ajbmb.2011.145.157
  13. Kato, M. J, A. Chu, L. B. Davin, and N. G. Lewis. 1998. Biosynthesis of antioxidant lignans in Sesamum indicum L. seeds. Phytochemistry. 47(4) : 583-591. https://doi.org/10.1016/S0031-9422(97)00727-9
  14. Kim, H. S., K. D. Park, S. B. Bae, Y. K. Son, C. W. Lee, J. G. Kim, J. C. Kim, and J. H. Nam. 2003. Genotype and environment effects on barley grain $\beta$-glucan content. Korean Journal of Breeding Science. 35(2) : 240-241.
  15. Kim, J. K., J. K. Bang, C. B. Park, B. K. Lee, and Y. H. Lee. 2001. The variation of quality characteristics in sesame and perilla according to different area and year. Korean Journal of Crop Science. 202-203.
  16. Kim, J. S. 1997. Change in isoflavone contents during maturation of soybean seed. Journal of Food Science and Nutrition. 2(3) : 255-258.
  17. Kim, K. S., C. G. Park, and J. K. Bang. 2003. Varietal and yearly differences of lignan contents in fruits of collected lines of schizandra chinensis baillon. Korean Journal of Medicinal Crop Science. 11(1) : 71-75.
  18. Kim, S. L., M. A. Berhow, J. T. Kim, H. Y. Chi, S. J. Lee, and I. M Chung. 2006. Evaluation of soyasaponin, isoflavone, protein, lipid, and free sugar accumulation in developing soybean seeds. Journal of Agricultural and Food Chemistry.
  19. Korean statistical information service. 2013. http://kosis.kr. Statistics Korea.
  20. Lee, S. W., C. W. Kang, D. H. Kim, Y. Satoko, and K. Masumi. 1999. Varietal variation of sesamin, sesamolin, and oil contents according to seed coat colors in sesame. Korean Journal of Breeding Science. 31(3) : 286-292.
  21. Osawa T, M. Nagata, M. Namiki, and Y. Fukuda. 1985. Sesamolinol, a novel antioxidant isolated from sesame seeds(Sesamum indicum L). Agricultural and Biological Chemistry. 49 : 3351-3352. https://doi.org/10.1271/bbb1961.49.3351
  22. Park, J. H. Development of core collection and its genetic evaluation by SSR markers in germplasm of sesame (Sesamum indicum L.). 2012 Chunbuk National University.
  23. Rangkadilok, N., N. Pholphana, C. Mahidol, W. Wongyai, K. Saensooksree, S. Nookabkaew, and J. Satayavivad. 2010. Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and their hull fractions. Food Chemistry. 122(3) : 724-730. https://doi.org/10.1016/j.foodchem.2010.03.044
  24. Rural Development Administration (RDA) Genebank (2011) http://www.genebank.go.kr. Accessed 10 June 2011.
  25. Ryu, S. N. 2000. Varietal difference of lignan glycoside content in sesame. Korean Journal of Breeding Science. 32(1) : 104-105..
  26. Ryu, S. N., C. W. Kang, J. I. Lee, S. T. Lee, K. S. Kim, and B. O. Ahn. 1996. Perspective of utilization and function of antioxidants in sesame. Korean Journal of Crop Science. 41(S) : 94-109.
  27. SAS. 2009. SAS 9.2 for windows. SAS Institute Inc., Cary, NC, USA.
  28. Shahidi, F., C. M. Liyana-Pathirana, and D. S. Wall. 2006. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chemistry. 99(3) : 478-483. https://doi.org/10.1016/j.foodchem.2005.08.009
  29. Shim, K. B., C. D. Hwang, S. B. Pae, M. H. Lee, T. J. Ha, C. W. Park, and K. Y. Park. 2010. Comparison of physiochemical characters of sesame seeds according to the different producing origin. The Journal of the Korean Society of International Agriculture. 22(4) : 371-375.
  30. Shyu, Y. S. and L. S. Hwang. 2002. Antioxidative activity of crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Research International. 35(4): 357-365. https://doi.org/10.1016/S0963-9969(01)00130-2
  31. Tashiro, T., Y. Fukuda, T. Osawa, and M. Namiki. 1990. Oil and minor components of sesame (Sesamum indicum L.) strains. Journal of the American Oil Chemists' Society. 67(8) : 508-511. https://doi.org/10.1007/BF02540757
  32. Wang, L., Y. Zhang, P. LI, X. Wang, W. Zhang, W. Wei, and X. Zhang. 2012. HPLC analysis of seed sesamin and sesamolin variation in a sesame germplasm collection in China. Journal of the American Oil Chemists' Society. 89(6) : 1011-1020. https://doi.org/10.1007/s11746-011-2005-7
  33. Weiss, E. A. 1983. Sesame. Weiss, EA oilseed crops. London, Longman. 31-99.
  34. Yamashita, K., Y. Lizuka, T. Imai, and M. Namiki. 1995. Sesame seed and its lignans produce marked enhancement of vitamin E activity in rats fed a low $\alpha$-Tocopherol diet. Lipids. 30(11) : 1019-1028. https://doi.org/10.1007/BF02536287
  35. Yamashita, K., Y. Nohara., K. Katayama, and M. Namiki. 1992. Sesame seed lignans and gamma-tocopherol act synergistically to produce vitamin E activity in rats. The Journal of Nutrition. 122(12) : 2440-2446.
  36. Yasumoto, S. and M. Katsuta. 2006. Breeding a high-lignancontent sesame cultivar in the prospect of promoting metabolic functionality. Japan Agricultural Research Quarterly. 40(2) : 123-129. https://doi.org/10.6090/jarq.40.123
  37. Yasumoto, S. and M. Komeichi. 1993. Growth stage affects sesamolin contents in sesame seeds. Japan Journal of Crop Science. 62(S1) : 300-301. https://doi.org/10.1626/jcs.62.300
  38. Zhang, H. Y., H. M. Miao, C. Li, L. B. Wei, and Q. Ma. 2012. Analysis of sesame karyotype and resemblance-near coefficient. Chinese Plant Bullet 47 : 602-614.
  39. Zhang, X. R., Y. Z. Zhao, Y. Cheng, X. Y. Feng, Q. Y. Guo, M. D. Zhou, and T. Hodgkin. 2000. Establishment of sesame germplasm core collection in China. Genetic Resources and Crop Evolution. 47(3) : 273-279. https://doi.org/10.1023/A:1008767307675

Cited by

  1. Multivariate analysis to discriminate the origin of sesame seeds by multi-element analysis inductively coupled plasma-mass spectrometry vol.26, pp.2, 2017, https://doi.org/10.1007/s10068-017-0051-0
  2. Changes in Lignan Content and Antioxidant Activity of Fermented Sesame (Sesame indicum L.) by Cultivars vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.143
  3. 참깨의 볶음 조건이 참깨 착즙액의 이화학적 및 생화학적 특성에 미치는 영향 vol.49, pp.4, 2014, https://doi.org/10.9721/kjfst.2017.49.4.421
  4. Fine Mapping of a Major Pleiotropic QTL Associated with Sesamin and Sesamolin Variation in Sesame (Sesamum indicum L.) vol.10, pp.7, 2014, https://doi.org/10.3390/plants10071343
  5. Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities vol.151, pp.None, 2014, https://doi.org/10.1016/j.foodres.2021.110850