DOI QR코드

DOI QR Code

Discrimination of rival isotherm equations for aqueous contaminant removal systems

  • Received : 2013.11.14
  • Accepted : 2014.04.18
  • Published : 2014.06.25

Abstract

Two different model selection indices, the Akaike information criterion (AIC) and the coefficient of determination ($R^2$), are used to discriminate competing isotherm equations for aqueous pollutant removal systems. The former takes into account model accuracy and complexity while the latter considers model accuracy only. The five types of isotherm shape in the Brunauer-Deming-Deming-Teller (BDDT) classification are considered. Sorption equilibrium data taken from the literature were correlated using isotherm equations with fitting parameters ranging from two to five. For the isotherm shapes of types I (favorable) and III (unfavorable), the AIC favors two-parameter equations which can easily track these simple isotherm shapes with high accuracy. The $R^2$ indicator by contrast recommends isotherm equations with more than two parameters which can provide marginally better fits than two-parameter equations. To correlate the more intricate shapes of types II (multilayer), IV (two-plateau) and V (S-shaped) isotherms, both indices favor isotherm equations with more than two parameters.

Keywords

References

  1. Akaike, H. (1974), "A new look at the statistical model identification", IEEE Trans. Autom. Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Akgerman, A. and Zardkoohi, M. (1996), "Adsorption of phenolic compounds on fly ash", J. Chem. Eng. Data, 41(2), 185-187. https://doi.org/10.1021/je9502253
  3. Akpa, O.M. and Unuabonah, E.I. (2011), "Small-sample corrected Akaike information criterion: an appropriate statistical tool for ranking of adsorption isotherm models", Desalination, 272(1-3), 20-26. https://doi.org/10.1016/j.desal.2010.12.057
  4. Barka, N., Assabbane, A., Nounah, A., Laanab, L. and Ichou, Y.A. (2009), "Removal of textile dyes from aqueous solutions by natural phosphate as a new adsorbent", Desalination, 235(1-3), 264-275. https://doi.org/10.1016/j.desal.2008.01.015
  5. Basha, S. and Jha, B. (2008), "Estimation of isotherm parameters for biosorption of Cd(II) and Pb(II) onto brown seaweed, Lobophora variegate", J. Chem. Eng. Data, 53, 449?455.
  6. Basha, S., Murthy, Z.V.P. and Jha, B. (2008), "Isotherm modeling for biosorption of Cu(II) and Ni(II) from wastewater onto brown seaweed, Cystoseira indica", AIChE J., 54(2), 3291-3302. https://doi.org/10.1002/aic.11606
  7. Bianchi Janetti, E., Dror, M. Riva, I., Guadagnini, A. and Berkowitz, B. (2012), "Estimation of single-metal and competitive sorption isotherms through maximum likelihood and model quality criteria", Soil Sci. Soc. Am. J., 76(4), 1229-1245. https://doi.org/10.2136/sssaj2012.0010
  8. Blazquez, G., Calero, M., Hernainz, F., Tenorio, G. and Martin-Lara, M.A. (2010), "Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production", Chem. Eng. J., 160(2), 615-622. https://doi.org/10.1016/j.cej.2010.03.085
  9. Bolster, C.H. and Hornberger, G.M. (2007), "On the use of linearized Langmuir equations", Soil Sci. Soc. Am. J., 71(6), 1796-1806. https://doi.org/10.2136/sssaj2006.0304
  10. Brunauer, S., Emmett, P.H. and Teller, E. (1938), "Adsorption of gases in multimolecular layers", J. Am. Chem. Soc., 60(2), 309-319. https://doi.org/10.1021/ja01269a023
  11. Brunauer, S., Deming, L.S., Deming, W.E. and Teller, E. (1940), "On a theory of the van der Waals adsorption of gases", J. Am. Chem. Soc., 62(7), 1723-1732. https://doi.org/10.1021/ja01864a025
  12. Burnham, K.P. and Anderson, D.R. (2002), Model Selection and Multimodel Inference: A Practical Information?Theoretic Approach, (2nd Edition), Springer-Verlag, New York, USA.
  13. Copello, G.J., Pesenti, M.P., Raineri, M., Mebert, A.M., Piehl, L.L., Rubin de Celis, E. and Diaz, L.E. (2013), "Polyphenol-$SiO_2$ hybrid biosorbent for heavy metal removal. Yerba mate waste (Ilex paraguariensis) as polyphenol source: kinetics and isotherm studies", Colloids Surf. B, 102, 218-226. https://doi.org/10.1016/j.colsurfb.2012.08.015
  14. Coruh, S. and Geyikci, F. (2012), "Adsorption of copper (II) ions on montmorillonite and sepiolite clays: equilibrium and kinetic studies", Desalin. Water Treat., 45(1-3), 351-360. https://doi.org/10.1080/19443994.2012.692058
  15. Czinkota, I., Foldenyi, R., Lengyel, Z. and Marton, A. (2002), "Adsorption of propisochlor on soils and soil components equation for multi-step isotherms", Chemosphere, 48(7), 725-731. https://doi.org/10.1016/S0045-6535(02)00139-X
  16. Do, D.D. (1998), Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, UK.
  17. Ebadi, A., Soltan Mohammadzadeh, J.S. and Khudiev, A. (2007), "Adsorption of methyl tert-butyl ether on perfluorooctyl alumina adsorbents ? high concentration range", Chem. Eng. Technol., 30(12), 1666-1673. https://doi.org/10.1002/ceat.200700201
  18. Ebadi, A., Soltan Mohammadzadeh, J.S. and Khudiev, A. (2009), "What is the correct form of BET isotherm for modeling liquid phase adsorption?", Adsorption, 15(1), 65-73. https://doi.org/10.1007/s10450-009-9151-3
  19. Edgehill, R.U. and Lu, G.Q. (Max) (1998), "Adsorption characteristics of carbonized bark for phenol and pentachlorophenol", J. Chem. Technol. Biotechnol., 71(1), 27-34. https://doi.org/10.1002/(SICI)1097-4660(199801)71:1<27::AID-JCTB796>3.0.CO;2-T
  20. El-Khaiary, M.I. and Malash, G.F. (2011), "Common data analysis errors in batch adsorption studies", Hydrometallurgy, 105(3-4), 314-320. https://doi.org/10.1016/j.hydromet.2010.11.005
  21. Freundlich, H. (1926), Colloid and Capillary Chemistry, Methuen, London, England.
  22. Fritz, W. and Schlunder, E.U. (1974), "Simultaneous adsorption equilibria of organic solutes in dilute aqueous solution on activated carbon", Chem. Eng. Sci., 29(5), 1279-1282. https://doi.org/10.1016/0009-2509(74)80128-4
  23. Giles, C.H., Smith, D. and Huitson, A. (1974), "A general treatment and classification of the solute adsorption isotherm. I: theoretical", J. Colloid Interface Sci., 47(3), 755-765. https://doi.org/10.1016/0021-9797(74)90252-5
  24. Gritti, F., Piatkowski, W. and Guiochon, G. (2002), "Comparison of the adsorption equilibrium of a few low-molecular mass compounds on a monolithic and a packed column in reversed-phase liquid chromatography", J. Chromatogr. A, 978(1-2), 81-107. https://doi.org/10.1016/S0021-9673(02)01279-7
  25. Hamdaoui, O. and Naffrechoux, E. (2007), "Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part II. Models with more than two parameters", J. Hazard. Mater., 147(1-2), 401-411. https://doi.org/10.1016/j.jhazmat.2007.01.023
  26. Hinz, C. (2011), "Description of sorption data with isotherm equations", Geoderma, 99(3-4), 225-243.
  27. Hurvich, C.M. and Tsai, C.L. (1989), "Regression and time-series model selection in small samples", Biometrika, 76(2), 297-307. https://doi.org/10.1093/biomet/76.2.297
  28. Jovanovic, D.S. (1969), "Physical adsorption of gases. I: isotherms for monolayer and multilayer adsorption", Kolloid-Z. Z. Polym., 235, 1203-1213. https://doi.org/10.1007/BF01542530
  29. Juang, R.-S. and Shiau, J.-Y. (1999), "Adsorption isotherms of phenols from water onto macroreticular resins", J. Hazard. Mater., 70(3), 171-183. https://doi.org/10.1016/S0304-3894(99)00152-1
  30. Kah, M., Zhang, X., Jonker, M.T.O. and Hofmann, T. (2011), "Measuring and modeling adsorption of PAHs to carbon nanotubes over a six order of magnitude wide concentration range", Environ. Sci. Technol., 45(14), 6011-6017. https://doi.org/10.1021/es2007726
  31. Konda, L.N., Czinkota, I., Fuleky, G. and Morovjan, G. (2002), "Modeling of single-step and multistep adsorption isotherms of organic pesticides on soil", J. Agric. Food Chem., 50(25), 7326-7331. https://doi.org/10.1021/jf0204506
  32. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica, and platinum", J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  33. Li, Z. (1985), "A new model for physical adsorption on solid surfaces", Chin. J. Chem. Eng., 4, 120-134.
  34. Lua, A.C. and Yang, T. (2009), "Theoretical analysis and experimental study on $SO_2$ adsorption onto pistachio-nut-shell activated carbon", AIChE J., 55(2), 423-433. https://doi.org/10.1002/aic.11684
  35. Lv, L., He, J., Wei, M., Evans, D.G. and Zhou, Z. (2007), "Treatment of high fluoride concentration water by MgAl-$CO_3$ layered double hydroxides: kinetic and equilibrium studies", Water Res., 41(7), 1534-1542. https://doi.org/10.1016/j.watres.2006.12.033
  36. Maresova, J., Pipiska, M., Hornik, M., Rozlo?nik, M., Augustin, J. and Lesny, J. (2012), "Biosorption of cadmium and zinc by activated sludge from single and binary solutions: mechanism, equilibrium and experimental design study", J. Taiwan Inst. Chem. Eng., 43(3), 433-443. https://doi.org/10.1016/j.jtice.2011.12.004
  37. Martin-Lara, M.A., Hernainz, F., Calero, M., Blazquez, G. and Tenorio, G. (2009), "Surface chemistry evaluation of some solid wastes from olive-oil industry used for lead removal from aqueous solutions", Biochem. Eng. J., 44(2-3), 151-159. https://doi.org/10.1016/j.bej.2008.11.012
  38. Matott, L.S., Bandilla, K. and Rabideau, A.J. (2009), "Incorporating nonlinear isotherms into robust multilayer sorptive barrier design", Adv. Water Resour., 32(11), 1641-1651. https://doi.org/10.1016/j.advwatres.2009.08.010
  39. Maurya, N.S. and Mittal, A.K. (2006), "Applicability of equilibrium isotherm models for the biosorptive uptakes in comparison to activated carbon-based adsorption", J. Environ. Eng., 132(12), 1589-1599. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:12(1589)
  40. Miller, C.O.M. and Clump, C.W. (1970), "A liquid phase adsorption study of the rate of diffusion of phenol from aqueous solution into activated carbon", AIChE J., 16(2), 169-172. https://doi.org/10.1002/aic.690160204
  41. Motulsky, H. and Christopoulos, A. (2004), Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting, Oxford University Press, Oxford, UK.
  42. Pagnanelli, F., Beolchini, F., Di Biase, A. and Veglio, F. (2003), "Effect of equilibrium models in the simulation of heavy metal biosorption in single and two-stage UF/MF membrane reactor systems", Biochem. Eng. J., 15(1), 27-35. https://doi.org/10.1016/S1369-703X(02)00179-1
  43. Schiewer, S. and Patil, S.B. (2008), "Modeling the effect of pH on biosorption of heavy metals by citrus peels", J. Hazard. Mater., 157(1), 8-17. https://doi.org/10.1016/j.jhazmat.2007.12.076
  44. Schwaab, M. and Pinto, J.C. (2008), "Optimum reparameterization of power function models", Chem. Eng. Sci., 63(18), 4631-4635. https://doi.org/10.1016/j.ces.2008.07.005
  45. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. and Siemieniewska, T. (1985), "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity", Pure Appl. Chem., 57(4), 603-619.
  46. Sips, R. (1948), "Structure of a catalyst surface", J. Chem. Phys., 16, 490-495. https://doi.org/10.1063/1.1746922
  47. Wang, L. (2012), "Application of activated carbon derived from 'waste' bamboo culms for the adsorption of azo disperse dye: kinetic, equilibrium and thermodynamic studies", J. Environ. Manage., 102, 79-87. https://doi.org/10.1016/j.jenvman.2012.02.019
  48. Zamil, S.S., Ahmad, S., Choi, M.H., Park, J.Y. and Yoon, S.C. (2009), "Correlating metal ionic characteristics with biosorption capacity of Staphylococcus saprophyticus BMSZ711 using QICAR model", Bioresourc. Technol., 100(6), 1895-1902. https://doi.org/10.1016/j.biortech.2008.10.014

Cited by

  1. Selenite sorption onto goethite: isotherm and ion-competitive studies, and effect of pH on sorption kinetics vol.73, pp.12, 2014, https://doi.org/10.1007/s11696-019-00847-1
  2. Fitting a little-known isotherm equation to S-shaped adsorption equilibrium data vol.259, pp.None, 2021, https://doi.org/10.1016/j.seppur.2020.118079
  3. Revisiting the Temkin Isotherm: Dimensional Inconsistency and Approximate Forms vol.60, pp.35, 2021, https://doi.org/10.1021/acs.iecr.1c01788