과제정보
연구 과제 주관 기관 : Korean National Research Foundation (NRF)
참고문헌
-
Amir, A. and Lee, W. (2011), "Enhanced reductive dechlorination of tetrachloroethene by nano-sized zero valent iron with vitamin
$B_{12}$ ", Chem. Eng. J., 170(2), 492-497. https://doi.org/10.1016/j.cej.2011.01.048 - Barke, M.B. and Luebke, R.A. (1981), "Stable protective seed coating", U.S. Patent No. 4,272,417. Washington, DC: U.S. Patent and Trademark Office.
- Buhler, V. (2008), "Kollidon", BASF SE, Ludwigshafen, Germany.
- Cao, J., Elliott, D. and Zhang, W.-x. (2005), "Perchlorate reduction by nanoscale iron particles", J. Nanoparticle Res., 7(4-5), 499-506. https://doi.org/10.1007/s11051-005-4412-x
- Cirtiu, C.M., Raychoudhury, T., Ghoshal, S. and Moores, A. (2011), "Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre-and post-grafted with common polymers", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1), 95-104. https://doi.org/10.1016/j.colsurfa.2011.09.011
- Choi, J. and Lee, W. (2008), "Enhanced degradation of tetrachloroethylene by green rusts with platinum", Environ. Sci. Tech., 42(9), 3356-3362. https://doi.org/10.1021/es702661d
- Crane, R.A. and Scott, T.B. (2012), "Nanoscale zero-valent iron: future prospects for an emerging water treatment technology", J. Hazard. Mater., 211-212, 112-125. https://doi.org/10.1016/j.jhazmat.2011.11.073
- Dobias, B. (1993), Coagulation and Flocculation: Theory and Applications, CRC Press, Boca Raton, FL, USA.
- Elliott, D.W. and Zhang, W.-X. (2001), "Field assessment of nanoscale bimetallic particles for groundwater treatment", Environ. Sci. Tech, 35(24), 4922-4926. https://doi.org/10.1021/es0108584
- Greenlee, L.F. and Hooker, S.A. (2012), "Development of stabilized zero valent iron nanoparticles", Desalination Water Treat., 37(1-3), 114-121. https://doi.org/10.1080/19443994.2012.661262
- He, F. and Zhao, D. (2007), "Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers", Environ. Sci. Tech., 41(17), 6216-6221. https://doi.org/10.1021/es0705543
- He, F., Zhang, M., Qian, T. and Zhao, D. (2009), "Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling", J. Colloid Interface Sci., 334(1), 96-102. https://doi.org/10.1016/j.jcis.2009.02.058
- Hotze, E.M., Phenrat, T. and Lowry, G.V. (2010), "Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment", J. Environ. Quality, 39(6), 1909-1924. https://doi.org/10.2134/jeq2009.0462
- Hwang, Y.-H., Kim, D.-G. and Shin, H.-S. (2011), "Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron", Appl. Catalysis B: Environmental, 105(1), 144-150. https://doi.org/10.1016/j.apcatb.2011.04.005
- Hwang, Y., Lee, Y.C., Mines, P.D., Huh, Y.S. and Andersen, H.R. (2014), "Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination", Appl. Catal. B: Environ., 147, 748-755. https://doi.org/10.1016/j.apcatb.2013.10.017
- Jung, J., Bae, S. and Lee, W. (2012), "Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst", Applied Catalysis B: Environmental, 127, 148-158. https://doi.org/10.1016/j.apcatb.2012.08.017
- Kocur, C.M., O'Carroll, D.M. and Sleep, B.E. (2013), "Impact of nZVI stability on mobility in porous media", Journal of contaminant hydrology, 145, 17-25. https://doi.org/10.1016/j.jconhyd.2012.11.001
- Lee, W., Batchelor, B., Schlautman, M.A. (2000), "Reductive capacity of soils for chromium", Environ. Tech., 21(8), 953-963. https://doi.org/10.1080/09593332108618058
- Lee, Y.-C., Lee, K., Hwang, Y., Andersen, H.R., Kim, B., Lee, S.Y., Choi, M.-H., Park, J.-Y., Han, Y.-K. and Oh, Y.-K. (2014), "Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1", RSC Advances, 4(8), 4122-4127. https://doi.org/10.1039/c3ra46602g
- Lien, H.-L. and Zhang, W.-X. (2001), "Nanoscale iron particles for complete reduction of chlorinated ethenes", Colloids Surfaces A: Physicochem. Eng. Aspects, 191(1-2), 97-105. https://doi.org/10.1016/S0927-7757(01)00767-1
- Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S. and Lowry, G.V. (2005), "TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties", Environ. Sci. Tech., 39(5), 1338-1345. https://doi.org/10.1021/es049195r
- Mayer, A.B. and Mark, J.E. (1996), "Polymer-protected, colloidal platinum nanocatalysts", Polymer Bulletin, 37(5), 683-690. https://doi.org/10.1007/BF00296616
- Mirescu, A. and Prusse, U. (2006), "Selective glucose oxidation on gold colloids", Catalysis Commun., 7(1), 11-17. https://doi.org/10.1016/j.catcom.2005.07.019
- Noubactep, C., Care, S. and Crane, R. (2012), "Nanoscale metallic iron for environmental remediation: prospects and limitations", Water Air Soil Pollut., 223(3), 1363-1382. https://doi.org/10.1007/s11270-011-0951-1
- Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D. and Lowry, G.V. (2006), "Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions", Environ. Sci. Tech., 41(1), 284-290.
- Phenrat, T., Liu, Y., Tilton, R.D. and Lowry, G.V. (2009), "Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms", Environ. Sci. Tech., 43(5), 1507-1514. https://doi.org/10.1021/es802187d
- Porter, S.C. (1981), "Tablet coating", Drug Cosmetic Industry, 128(5), 46-93.
- Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R.D. and Lowry, G.V. (2007), "Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media", Environ. Eng. Sci., 24(1), 45-57. https://doi.org/10.1089/ees.2007.24.45
- Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R.D. and Lowry, G.V. (2008), "Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns", Environ. Sci. Tech., 42(9), 3349-3355. https://doi.org/10.1021/es071936b
- Schrick, B., Hydutsky, B.W., Blough, J.L. and Mallouk, T.E. (2004), "Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater", Chem. Mater, 16 (11), 2187-2193. https://doi.org/10.1021/cm0218108
- Shimmin, R.G., Schoch, A.B. and Braun, P.V. (2004), "Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols", Langmuir, 20(13), 5613-5620. https://doi.org/10.1021/la036365p
- Strobl, G.R. (1996), The Physics of Polymers Concepts for Understanding Their Structures and Behavior, Springer-Verlag, New York, USA.
- Sun, Y.-P., Li, X.-Q., Zhang, W.-X. and Wang, H.P. (2007), "A method for the preparation of stable dispersion of zero-valent iron nanoparticles", Colloids Surfaces A: Physicochem. Eng. Aspects, 308(1), 60-66. https://doi.org/10.1016/j.colsurfa.2007.05.029
- Sun, Y.-P., Li, X.-Q., Li, J., Cao, J., Zhang, W.-X. and Wang, H.P. (2006), "Characterization of zero-valent iron nanoparticles", Adv. Colloid Interface Sci, 120(1-3), 47-56. https://doi.org/10.1016/j.cis.2006.03.001
- Tanboonchuy, V., Grisdanurak, N. and Liao, C.-H. (2012), "Nitrate probe for quantifying reducing power of nanoscale zero-valent iron", Sustain. Environ Res., 22(3), 185-191.
- Tiraferri, A., Chen, K.L., Sethi, R. and Elimelech, M. (2008), "Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum", J. Colloid Interface Sci., 324(1-2), 71-79. https://doi.org/10.1016/j.jcis.2008.04.064
- Wang, C.-B. and Zhang, W.-X. (1997), "Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs", Environ. Sci. Tech., 31(7), 2154-2156. https://doi.org/10.1021/es970039c
- Wang, W., Zhou, M., Jin, Z. and Li, T. (2010), "Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation", J. Hazard. Mater., 173(1), 724-730. https://doi.org/10.1016/j.jhazmat.2009.08.145
- Zhang, W.-X., Wang, C.-B. and Lien, H.-L. (1998), "Treatment of chlorinated organic contaminants with nanoscale bimetallic particles", Catalysis Today, 40(4), 387-395. https://doi.org/10.1016/S0920-5861(98)00067-4
- Zhou, H., Han, J., Baig, S.A. and Xu, X. (2011), "Dechlorination of 2, 4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles", J. Hazard. Materi., 198, 7-12. https://doi.org/10.1016/j.jhazmat.2011.10.002
- Zhang, M., He, F., Zhao, D. and Hao, X. (2011), "Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter", Water Res., 45(7), 2401-2414. https://doi.org/10.1016/j.watres.2011.01.028
피인용 문헌
- Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal vol.4, pp.2, 2016, https://doi.org/10.1039/C5TA05025A
- Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition vol.336, 2018, https://doi.org/10.1016/j.cej.2017.11.047
- A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction vol.24, pp.3, 2018, https://doi.org/10.4491/eer.2018.320
- Improved Affinity of Nanoscale Zero Valent Iron toward Hydrophobic Organic Solvent using Poly(1-vinylpyrrolidone-co-vinyl acetate) vol.42, pp.9, 2014, https://doi.org/10.4491/ksee.2020.42.9.431