DOI QR코드

DOI QR Code

Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

  • Lee, Nara (Department of Civil and Environmental Engineering, Korea Advanced Institute for Science and Technology) ;
  • Choi, Kyunghoon (Department of Civil and Environmental Engineering, Korea Advanced Institute for Science and Technology) ;
  • Uthuppu, Basil (Department of Micro- and Nanotechnology, Technical University of Denmark) ;
  • Jakobsen, Mogens H. (Department of Micro- and Nanotechnology, Technical University of Denmark) ;
  • Hwang, Yuhoon (Department of Environmental Engineering, Technical University of Denmark) ;
  • Broholm, Mette M. (Department of Environmental Engineering, Technical University of Denmark) ;
  • Lee, Woojin (Department of Civil and Environmental Engineering, Korea Advanced Institute for Science and Technology)
  • 투고 : 2013.12.14
  • 심사 : 2014.03.25
  • 발행 : 2014.06.25

초록

This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with specific weight ratios to iron contents. Colloidal stability was investigated based on the rate of sedimentation, hydrodynamic radius and zeta potential measurement. The characteristic time, which demonstrated dispersivity of particles resisting aggregation, increased from 21.2 min (bare nZVI) to 97.8 min with increasing amount of PVP/VA (the ratios of 2). For the most stable nZVI coated by PVP/VA, its reactivity was examined by nitrate reduction in a closed batch system. The pseudo-first-order kinetic rate constants for the nitrate reduction by the nanoparticles with PVP/VA ratios of 0 and 2 were 0.1633 and $0.1395min^{-1}$ respectively. A nitrogen mass balance, established by quantitative analysis of aqueous nitrogen species, showed that the addition of PVP/VA to nZVI can change the reduction capacity of the nanoparticles.

키워드

과제정보

연구 과제 주관 기관 : Korean National Research Foundation (NRF)

참고문헌

  1. Amir, A. and Lee, W. (2011), "Enhanced reductive dechlorination of tetrachloroethene by nano-sized zero valent iron with vitamin $B_{12}$", Chem. Eng. J., 170(2), 492-497. https://doi.org/10.1016/j.cej.2011.01.048
  2. Barke, M.B. and Luebke, R.A. (1981), "Stable protective seed coating", U.S. Patent No. 4,272,417. Washington, DC: U.S. Patent and Trademark Office.
  3. Buhler, V. (2008), "Kollidon", BASF SE, Ludwigshafen, Germany.
  4. Cao, J., Elliott, D. and Zhang, W.-x. (2005), "Perchlorate reduction by nanoscale iron particles", J. Nanoparticle Res., 7(4-5), 499-506. https://doi.org/10.1007/s11051-005-4412-x
  5. Cirtiu, C.M., Raychoudhury, T., Ghoshal, S. and Moores, A. (2011), "Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre-and post-grafted with common polymers", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1), 95-104. https://doi.org/10.1016/j.colsurfa.2011.09.011
  6. Choi, J. and Lee, W. (2008), "Enhanced degradation of tetrachloroethylene by green rusts with platinum", Environ. Sci. Tech., 42(9), 3356-3362. https://doi.org/10.1021/es702661d
  7. Crane, R.A. and Scott, T.B. (2012), "Nanoscale zero-valent iron: future prospects for an emerging water treatment technology", J. Hazard. Mater., 211-212, 112-125. https://doi.org/10.1016/j.jhazmat.2011.11.073
  8. Dobias, B. (1993), Coagulation and Flocculation: Theory and Applications, CRC Press, Boca Raton, FL, USA.
  9. Elliott, D.W. and Zhang, W.-X. (2001), "Field assessment of nanoscale bimetallic particles for groundwater treatment", Environ. Sci. Tech, 35(24), 4922-4926. https://doi.org/10.1021/es0108584
  10. Greenlee, L.F. and Hooker, S.A. (2012), "Development of stabilized zero valent iron nanoparticles", Desalination Water Treat., 37(1-3), 114-121. https://doi.org/10.1080/19443994.2012.661262
  11. He, F. and Zhao, D. (2007), "Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers", Environ. Sci. Tech., 41(17), 6216-6221. https://doi.org/10.1021/es0705543
  12. He, F., Zhang, M., Qian, T. and Zhao, D. (2009), "Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling", J. Colloid Interface Sci., 334(1), 96-102. https://doi.org/10.1016/j.jcis.2009.02.058
  13. Hotze, E.M., Phenrat, T. and Lowry, G.V. (2010), "Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment", J. Environ. Quality, 39(6), 1909-1924. https://doi.org/10.2134/jeq2009.0462
  14. Hwang, Y.-H., Kim, D.-G. and Shin, H.-S. (2011), "Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron", Appl. Catalysis B: Environmental, 105(1), 144-150. https://doi.org/10.1016/j.apcatb.2011.04.005
  15. Hwang, Y., Lee, Y.C., Mines, P.D., Huh, Y.S. and Andersen, H.R. (2014), "Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination", Appl. Catal. B: Environ., 147, 748-755. https://doi.org/10.1016/j.apcatb.2013.10.017
  16. Jung, J., Bae, S. and Lee, W. (2012), "Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst", Applied Catalysis B: Environmental, 127, 148-158. https://doi.org/10.1016/j.apcatb.2012.08.017
  17. Kocur, C.M., O'Carroll, D.M. and Sleep, B.E. (2013), "Impact of nZVI stability on mobility in porous media", Journal of contaminant hydrology, 145, 17-25. https://doi.org/10.1016/j.jconhyd.2012.11.001
  18. Lee, W., Batchelor, B., Schlautman, M.A. (2000), "Reductive capacity of soils for chromium", Environ. Tech., 21(8), 953-963. https://doi.org/10.1080/09593332108618058
  19. Lee, Y.-C., Lee, K., Hwang, Y., Andersen, H.R., Kim, B., Lee, S.Y., Choi, M.-H., Park, J.-Y., Han, Y.-K. and Oh, Y.-K. (2014), "Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1", RSC Advances, 4(8), 4122-4127. https://doi.org/10.1039/c3ra46602g
  20. Lien, H.-L. and Zhang, W.-X. (2001), "Nanoscale iron particles for complete reduction of chlorinated ethenes", Colloids Surfaces A: Physicochem. Eng. Aspects, 191(1-2), 97-105. https://doi.org/10.1016/S0927-7757(01)00767-1
  21. Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S. and Lowry, G.V. (2005), "TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties", Environ. Sci. Tech., 39(5), 1338-1345. https://doi.org/10.1021/es049195r
  22. Mayer, A.B. and Mark, J.E. (1996), "Polymer-protected, colloidal platinum nanocatalysts", Polymer Bulletin, 37(5), 683-690. https://doi.org/10.1007/BF00296616
  23. Mirescu, A. and Prusse, U. (2006), "Selective glucose oxidation on gold colloids", Catalysis Commun., 7(1), 11-17. https://doi.org/10.1016/j.catcom.2005.07.019
  24. Noubactep, C., Care, S. and Crane, R. (2012), "Nanoscale metallic iron for environmental remediation: prospects and limitations", Water Air Soil Pollut., 223(3), 1363-1382. https://doi.org/10.1007/s11270-011-0951-1
  25. Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D. and Lowry, G.V. (2006), "Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions", Environ. Sci. Tech., 41(1), 284-290.
  26. Phenrat, T., Liu, Y., Tilton, R.D. and Lowry, G.V. (2009), "Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms", Environ. Sci. Tech., 43(5), 1507-1514. https://doi.org/10.1021/es802187d
  27. Porter, S.C. (1981), "Tablet coating", Drug Cosmetic Industry, 128(5), 46-93.
  28. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R.D. and Lowry, G.V. (2007), "Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media", Environ. Eng. Sci., 24(1), 45-57. https://doi.org/10.1089/ees.2007.24.45
  29. Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R.D. and Lowry, G.V. (2008), "Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns", Environ. Sci. Tech., 42(9), 3349-3355. https://doi.org/10.1021/es071936b
  30. Schrick, B., Hydutsky, B.W., Blough, J.L. and Mallouk, T.E. (2004), "Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater", Chem. Mater, 16 (11), 2187-2193. https://doi.org/10.1021/cm0218108
  31. Shimmin, R.G., Schoch, A.B. and Braun, P.V. (2004), "Polymer size and concentration effects on the size of gold nanoparticles capped by polymeric thiols", Langmuir, 20(13), 5613-5620. https://doi.org/10.1021/la036365p
  32. Strobl, G.R. (1996), The Physics of Polymers Concepts for Understanding Their Structures and Behavior, Springer-Verlag, New York, USA.
  33. Sun, Y.-P., Li, X.-Q., Zhang, W.-X. and Wang, H.P. (2007), "A method for the preparation of stable dispersion of zero-valent iron nanoparticles", Colloids Surfaces A: Physicochem. Eng. Aspects, 308(1), 60-66. https://doi.org/10.1016/j.colsurfa.2007.05.029
  34. Sun, Y.-P., Li, X.-Q., Li, J., Cao, J., Zhang, W.-X. and Wang, H.P. (2006), "Characterization of zero-valent iron nanoparticles", Adv. Colloid Interface Sci, 120(1-3), 47-56. https://doi.org/10.1016/j.cis.2006.03.001
  35. Tanboonchuy, V., Grisdanurak, N. and Liao, C.-H. (2012), "Nitrate probe for quantifying reducing power of nanoscale zero-valent iron", Sustain. Environ Res., 22(3), 185-191.
  36. Tiraferri, A., Chen, K.L., Sethi, R. and Elimelech, M. (2008), "Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum", J. Colloid Interface Sci., 324(1-2), 71-79. https://doi.org/10.1016/j.jcis.2008.04.064
  37. Wang, C.-B. and Zhang, W.-X. (1997), "Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs", Environ. Sci. Tech., 31(7), 2154-2156. https://doi.org/10.1021/es970039c
  38. Wang, W., Zhou, M., Jin, Z. and Li, T. (2010), "Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation", J. Hazard. Mater., 173(1), 724-730. https://doi.org/10.1016/j.jhazmat.2009.08.145
  39. Zhang, W.-X., Wang, C.-B. and Lien, H.-L. (1998), "Treatment of chlorinated organic contaminants with nanoscale bimetallic particles", Catalysis Today, 40(4), 387-395. https://doi.org/10.1016/S0920-5861(98)00067-4
  40. Zhou, H., Han, J., Baig, S.A. and Xu, X. (2011), "Dechlorination of 2, 4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles", J. Hazard. Materi., 198, 7-12. https://doi.org/10.1016/j.jhazmat.2011.10.002
  41. Zhang, M., He, F., Zhao, D. and Hao, X. (2011), "Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter", Water Res., 45(7), 2401-2414. https://doi.org/10.1016/j.watres.2011.01.028

피인용 문헌

  1. Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal vol.4, pp.2, 2016, https://doi.org/10.1039/C5TA05025A
  2. Preparation of air stable nanoscale zero valent iron functionalized by ethylene glycol without inert condition vol.336, 2018, https://doi.org/10.1016/j.cej.2017.11.047
  3. A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction vol.24, pp.3, 2018, https://doi.org/10.4491/eer.2018.320
  4. Improved Affinity of Nanoscale Zero Valent Iron toward Hydrophobic Organic Solvent using Poly(1-vinylpyrrolidone-co-vinyl acetate) vol.42, pp.9, 2014, https://doi.org/10.4491/ksee.2020.42.9.431