DOI QR코드

DOI QR Code

Study on the physical properties of nylon66/glass fiber composites as a function of extrusion number

나일론66/유리섬유 복합체의 압출횟수에 따른 특성 연구

  • Lee, Bom Yi (Major in Polymer Science and Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
  • 이봄이 (공주대학교 신소재공학부 고분자공학전공) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Received : 2014.02.05
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

Because the physical properties can be decreased when a Nylon 66/glass fiber composite is injected into a mold over $300^{\circ}C$, a systematic study of the thermal history in the case of re-use is needed. Nylon 66/glass fiber extrudates as a function of the extrusion number were prepared using a twin screw extruder at 305/290/273/268/265/$260^{\circ}C$. The chemical structure, thermal properties, melt index, crystal structure, Izod impact strength, and rheological properties were measured by Fourier transform infra-red (FT-IR), melt indexer, DSC, TGA, XRD, Izod impact tester, and dynamic rheometer. The FT-IR spectra indicated that the number of extrusions did not affect the chemical structure. The decrease in molecular weight with increasing extrusion number was confirmed by the melt index and the complex viscosity of extrudates. Based on the DSC and TGA results, the thermal history had no effect on the melting temperature, regardless of the number of extrusions, but the degradation temperature decreased up to $20^{\circ}C$ with increasing extrusion number. The Izod impact strengths of the extrudates were found to decrease with increasing extrusion number. No structural change after extrusion was also confirmed because there was no change in the slope and shape of the G'-G" plot.

나일론66/유리섬유 복합체의 경우 $300^{\circ}C$ 이상의 고온에서 사출가공 될 때 물성 저하가 일어날 수 있어, 재이용시 열이력에 대한 체계적인 연구가 필요하다. $305/290/273/268/265/260^{\circ}C$ 온도조건의 이축압출기(twin screw extruder)를 이용하여 나일론66/유리섬유 복합체의 압출시료를 압출횟수에 따라 제조하였다. 압출횟수에 따른 화학구조, 열적특성, 용융지수, 결정구조, 아이조드 충격강도 및 유변학적 특성을 FT-IR, 용융지수 측정기, DSC, TGA, XRD, Izod 시험기, 그리고 유변물성 측정기를 이용하여 분석하였다. 적외선분광 스펙트럼을 이용하여 확인한 결과 압출횟수에 따른 압출시편에서의 화학구조 변화는 확인되지 않았다. 압출횟수에 따라 분자량이 감소하는 것을 용융지수와 복소점도를 이용하여 확인하였다. 나일론66/유리섬유 복합체의 용융온도는 큰 변화가 없으나, 압출횟수 증가에 따라 분해온도가 $20^{\circ}C$ 정도까지 감소하는 것을 DSC와 TGA를 이용하여 확인하였다. 압출시편의 아이조드 충격강도는 압출횟수가 증가함에 따라 감소하였다. 또한 나일론66/유리섬유 복합체 압출시편의 G'-G" 곡선의 기울기나 형태가 변하지 않는 것으로부터 압출시편에 가교와 같은 구조변화가 크게 나타나지 않음을 알 수 있었다.

Keywords

References

  1. S. Senthilvelan and R. Gnanamoorthy, Damping characteristics of unreinforced, glass and carbon fiber reinforced nylon 6/6 spur gears, Polymer Testing, 25, 56-62 (2006). DOI: http://dx.doi.org/10.1016/j.polymertesting.2005.09.005
  2. K. Y. Tsanga, D. L. DuQuesnaya, and P. J. Batesb, Fatigue properties of vibration-welded nylon 6 and nylon 66 reinforced with glass fibres, Composites Part B: Eng., 39, 396-404 (2008). DOI: http://dx.doi.org/10.1016/j.compositesb.2007.01.012
  3. B. S. Lee and B. C. Chun, Effect of nylon66 addition on the mechanical properties and fracture morphology of poly(phenylene sulfide)/glass fiber composites, Polym. Composites, 24, 191-198 (2003). DOI: http://dx.doi.org/10.1002/pc.10019
  4. S. H. Zhang, G. Chen, C. Cui, C. Mi, and F. Tian, Study on Friction and Wear Behavior of Glass Fiber and Fly Ash Reinforced MC Nylon Composites, Advanced Tribology, 460-463 (2010).
  5. D. M. Dhevi, C. W. Choi, A. A. Prabu, and K. J. Kim, Deterioration in mechanical properties of glass fiber-reinforced nylon 6,6 composites by aqueous calcium chloride mixture solutions, Polym. Composites, 30, 481-489 (2009). DOI: http://dx.doi.org/10.1002/pc.20613
  6. H. Yu, Y. Zhang, and W. Ren, Investigation on the fracture behavior and morphology of maleated poly(ethylene 1-octene) toughened and glass fiber-reinforced nylon 1010, J. of Appl. Poly. Sci., 113, 181-189 (2009). DOI: http://dx.doi.org/10.1002/app.29531
  7. J. H. Hong1, D. M. Dhevi, J. S. Lee, and K. J. Kim. Origin of deterioration in mechanical properties of glass fiber reinforced nylon 6,6 composites by aqueous ethylene glycol solution, Polym. Composites, 28, 778-784 (2007). DOI: http://dx.doi.org/10.1002/pc.20351
  8. F. D. Alsewailem1 and R. K. Gupta, Effect of Impact Modifier Types on Mechanical Properties of Rubber-Toughened Glass-Fibre-ReinforcedNylon 66, The Canadian J. of Chem. Eng., 84, 693-703, (2006).
  9. H. Tohmyoh1, Y. Ito1, K. Eguchi, W. Daido, J. Utsunomiya, and Y. Nakano, Creep behavior of glass-fiber-reinforced nylon 6 products, J. of Appl. Poly. Sci., 124, 4213-4221 (2012). DOI: http://dx.doi.org/10.1002/app.35393
  10. N. L. Surampadia, N. K. Ramisettia, and R. D. K. Misraa, On scratch deformation of glass fiber reinforced nylon 66, Mater. Sci. and Eng.: A, 456, 230-235 (207). https://doi.org/10.1016/j.msea.2006.11.150
  11. M. J. Lozano-Gonzalez, M. T. Rodriguez -Hernandez, E. A. G-D. L. Santos, and J. V.- Olmos, Physical-mechanical properties and morphological study on nylon6 recycling by injection molding, J. of Appli. Polym. Sci., 76, 851-858 (2000). DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(2000 0509)76:6<851::AID-APP11>3.0.CO;2-D
  12. B. J. Holland and J. N. Hay, Thermal degradation of nylon polymers, Polym Int, 49, 943-948 (2000). DOI: http://dx.doi.org/10.1002/1097-0126(200009)49:9 <943::AID-PI400>3.0.CO;2-5
  13. R. P. Singh, S. M. Desai, and G. Pathak, Thermal decomposition kinetics of photooxidized nylon 66, J. of Appl. Polym. Sci., .87, 2146-2150 (2003). DOI: http://dx.doi.org/10.1002/app.11589
  14. M. A. Schaffer, K. B. McAuley,. E. K. Marchildon, and M. F. Cunningham, Thermal degradation kinetics of nylon66: experimental study and comparison with model predictions, Macromol. React. Eng., 1, 563-577 (2007). DOI: http://dx.doi.org/10.1002/mren.200700020
  15. S. V. Levchik, E. D Weil, and M. Lewin, Thermal decomposition of aliphatic nylons, Polym. Int, 48, 532-557 (1999). DOI: http://dx.doi.org/10.1002/(SICI)1097-0126(199907)48:7<532::AID-PI214>3.0.CO;2-R
  16. Y. Li, D. Yan, and E. Zhou, In situ Fourier transform IR spectroscopy and variable -temperature wide-angle X-ray diffraction studies on the crystalline transformation of melt- crystallized nylon1212, Colloid Polym. Sci., 280, 124-129 (2002). DOI: http://dx.doi.org/10.1007/s003960100571
  17. E. C. Botelho, C. L. Nogueira, M. C. Rezende, Monitoring of nylon6,6/carbon fiber composites processing by X-ray diffraction and thermal analysis, J. of Appl. Polym. Sci., 86, 3114-3119 (2002). DOI: http://dx.doi.org/10.1002/app.11335
  18. B. Y. Lee, C. W. Jo, C. U. Shim, S. J. Lim, and Y. C. Kim, Effect of thermal history on the physical properties of Nylon 66, Appl. Chem. Eng., In Press (2014).
  19. R. K. Ayyer and A. I. Leonov, Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates, Rheol Acta, 43, 283-292 (2004). DOI: http://dx.doi.org/10.1007/s00397-003-0343-6
  20. G. Xu, G. Chen, Y. Ma, Y. Ke, and M. Han, Rheology of a low-filled polyamide6/ montmorillonite nanocomposite, J. of Appl. Poly. Sci., 108, 1501-1505 (2008). DOI: http://dx.doi.org/10.1002/app.27750

Cited by

  1. Exposure Assessment for Volatile Organic Compounds Generated through Extruding Work with Nylon 66 Resin vol.24, pp.3, 2014, https://doi.org/10.15269/JKSOEH.2014.24.3.256