References
- Abe H and Funada R (2005) Review - The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. IAWA J. 26, 161-174. https://doi.org/10.1163/22941932-90000108
- Abe H, Funada R, Ohtani J, and Fukazawa K (1997) Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees 11, 328-332. https://doi.org/10.1007/s004680050092
- Anagnost S E, Mark R E, and Hanna R B (2002) Variation of microfibril angle within individual tracheids. Wood Fiber Sci. 34, 337-349.
- Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpaa P, and Pesonen E (2000) Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of measuring techniques. J. Wood Sci. 46, 343-349. https://doi.org/10.1007/BF00776394
- Barnett J R and Bonham V A (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 79, 461-472.
- Bergander A, Brandstrom J, Daniel G, and Salmen L (2002) Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy. J. Wood Sci. 48, 255-263. https://doi.org/10.1007/BF00831344
- Bergander A and Salmen L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J. Mater. Sci. 37, 151-156. https://doi.org/10.1023/A:1013115925679
- Brandstrom J (2004) Microfibril angle of the S-1 cell wall layer of Norway spruce compression wood tracheids. IAWA J. 25, 415-423. https://doi.org/10.1163/22941932-90000374
- Brandstrom J, Bardage S L, Daniel G, and Nilsson T (2003) The structural organisation of the S-1 cell wall layer of Norway spruce tracheids. IAWA J. 24, 27-40. https://doi.org/10.1163/22941932-90000318
- Cave I D (1997) Theory of X-ray measurement of microfibril angle in wood. The condition for reflection X-ray diffraction by materials with fibre type symmetry. Wood Sci. Technol. 31, 143-152. https://doi.org/10.1007/BF00705881
- Donaldson L (2008) Microfibril angle: measurement, variation and relationships - a Review. IAWA J. 29, 345-386. https://doi.org/10.1163/22941932-90000192
- Donaldson L and Frankland A (2004) Ultrastructure of iodine treated wood. Holzforschung 58, 219-225.
- Donaldson L and Xu P (2005) Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees-Struct. Funct. 19, 644-653. https://doi.org/10.1007/s00468-005-0428-1
- Donaldson L A (1985) Critical assessment of interference microscopy as a technique for measuring lignin distribution in cell walls. New Zealand J. Forest. Sci. 15, 349-360.
- Entwistle K M, Kong K, MacDonald M A, Navaranjan N, and Eichhorn S J (2007) The derivation of the microfibril angle in softwood using wide-angle synchrotron X-ray diffraction on structurally characterised specimens. J. Mater. Sci. 42, 7263-7274. https://doi.org/10.1007/s10853-006-1460-2
- Fengel D and Wegener G (1983) Wood: Chemistry, Ultrastructure, Reactions (de Gruyter, New York).
- Franklin G L (1945) Preparation of thin selection of synthetic resins and wood-resins composite and new merceration method for wood. Nature 155, 51-55.
- Hein P R G, Clair B, Brancheriau L, and Chaix G (2010) Predicting microfibril angle in Eucalyptus wood from different wood faces and surface qualities using near infrared spectra. J. near Infrared Spec. 18, 455-464. https://doi.org/10.1255/jnirs.905
- Kasarova S N, Sultanova N G, Ivanov C D, and Nikolov I D (2007) Analysis of the dispersion of optical plastic materials. Opt. Mater. 29, 1481-1490. https://doi.org/10.1016/j.optmat.2006.07.010
- Kwon O (2014) Investigation of bordered pit ultrastructure in tracheid of Korean red pine (Pinus densiflora) by confocal reflection microscopy. J. Korean Wood Sci. Technol. 42, 346-355. https://doi.org/10.5658/WOOD.2014.42.3.346
- Kwon O, Lee M R, and Eom C D (2013) Utilization of light microscopy and FFT for MFA measurement from unstained sections of red pine (Pinus densiflora). J. Korean Wood Sci. Technol. 41, 399-405. https://doi.org/10.5658/WOOD.2013.41.5.399
- Leney L (1981) A technique for measuring fibril angle using polarizedlight. Wood and Fiber 13, 13-16.
- Paddock S (2002) Confocal reflection microscopy: the “other” confocal mode. Biotechniques 32, 274-278.
- Palviainen J, Silvennoinen R, and Rouvinen J (2004) Analysis of microfibril angle of wood fibers using laser microscope polarimetry. Opt. Eng. 43, 186-191. https://doi.org/10.1117/1.1630057
- Peter G F, Benton D M, and Bennett K (2003) A simple, direct method for measurement of microfibril angle in single fibres using differential interference contrast microscopy. J. Pulp Pap. Sci. 29, 274-280.
- Reis D and Vian B (2004) Helicoidal pattern in secondary cell walls and possible role of xylans in their construction. Cr. Biol. 327, 785-790. https://doi.org/10.1016/j.crvi.2004.04.008
- Sedighi-Gilani M, Sunderland H, and Navi P (2005) Microfibril angle nonuniformities within normal and compression wood tracheids. Wood Sci. Technol. 39, 419-430. https://doi.org/10.1007/s00226-005-0022-0
- Semler E J, Tjia J S, and Moghe P V (1997) Analysis of surface microtopography of biodegradable polymer matrices using confocal reflection microscopy. Biotechnol. prog. 13, 630-634. https://doi.org/10.1021/bp9700871