DOI QR코드

DOI QR Code

An Analysis of High School Students' Conceptions of Conservation of Mass on Carbon Cycle through Carbon Emission Scenario

탄소 배출 시나리오를 통한 고등학생들의 탄소 순환에 대한 질량 보존의 개념 분석

  • Seo, Jeong-Wook (Department of Earth Science Education, Korea National University of Education) ;
  • Kim, Hyoungbum (Department of Education, University of Quebec in Montreal (UQAM)) ;
  • Potvin, Patrice (Department of Education, University of Quebec in Montreal (UQAM))
  • 서정욱 (한국교원대학교 지구과학교육과) ;
  • 김형범 (퀘백대학교 몬트리올 캠퍼스 교육학과) ;
  • Received : 2014.02.25
  • Accepted : 2014.06.01
  • Published : 2014.06.30

Abstract

The purpose of this study was to investigate high school students' conception of conservation of mass through the scenario of carbon emission in terms of carbon cycle. Seventy six high school students of 11th grade were participated in this study. Participants were provided with two scenarios that showed a gradual increase and decrease of atmospheric $CO_2$ amount from the level recorded in 2013 up to 450 ppm and to 340 ppm by 2110, which is the changes of around 15%. We asked participants to explain the reason after having them draw the emissions trajectory of $CO_2$ according to scenario. Most participants thought that carbon emission would continue to increase despite the two scenarios of carbon emission making sense in terms of conservation of mass between emissions and the natural removal of carbon dioxide. This implies that participants came to think of pattern matching that carbon emission would continue to increase as they used correlation graphs of carbon emission: that is, the graphs of the evolution of anthropogenic emissions, of atmospheric $CO_2$, and of global mean temperature, from the beginning of the Industrial Revolution up to date, all of which are shown in high school earth science textbooks.

이 연구의 목적은 탄소 순환 관련 탄소 배출 시나리오를 통해 고등학교 학생들의 질량 보존의 개념을 확인하는 것이다. 이 연구를 위해 총 76명의 고등학교 2학년 학생들이 참여하였다. 연구 참여자들에게 2013년의 대기 중 이산화탄소 값이 2110년까지 ${\pm}15%$의 변화로 450 ppm와 340 ppm으로 점진적으로 증가 또는 감소되는 두 개의 시나리오를 제시하였다. 시나리오에 따라 연구 참여자들에게 이산화탄소의 배출량 궤적을 그리게 한 후, 이를 설명하게 하였다. 그 결과는 다음과 같다. 대부분의 연구 참여자들은 탄소 배출 시나리오에 따른 이산화탄소 배출량과 자연적 순수 제거량에 대한 질량 보존의 추론보다는 이산화탄소 배출량은 앞으로도 계속해서 증가할 것이라는 결과를 나타내었다. 이는 연구 참여자들이 고등학교 지구과학 교과서의 탄소 배출과 관련된 그래프들 즉, 산업혁명 이후 최근까지의 인위적 이산화탄소 배출량 그래프, 대기 중 이산화탄소 농도 그래프, 평균 지구의 온도에 대한 그래프를 통해 이산화탄소 배출량이 계속해서 증가할 것이라는 패턴 매칭(pattern matching)을 생각하게 되었다는 것을 의미한다.

Keywords

References

  1. Boon, H.J., 2010, Climate change? who knows? a comparison of secondary students and pre-service teachers. Australian Journal of Teacher Education, 35, 104-120.
  2. Choi, B.G., Lee, H.S., Chu, B.S., Moon, B.K., So, Y.M., Lee, J.E., Lee, J.E., and Jo, M.A., 2011, Earth Science I. Chunjae Education, Seoul, Korea, 320 p. (in Korean)
  3. Choi, S., Niyogi, D., Shepardson, D.P., and Charusombat, U., 2010, Do earth and environmental science textbooks promote middle and high school students? conceptual development about climate change?: Textbooks' consideration of students? misconceptions. Bulletin of American Meteorological Society, 91, 889-898. https://doi.org/10.1175/2009BAMS2625.1
  4. Clark, J., Marks, J., Haden C., Bell, M., and Hungate B., 2012, The Carbon cycle game: A regionally relevant activity to introduce climate change. Journal of National Earth Science Teachers Association, 28, 9-13.
  5. Cohen, J., 1960, A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46. https://doi.org/10.1177/001316446002000104
  6. Driver, R., Squires, A., Rushworth, P., and Wood-Robinson, V., 1994, Making sense of secondary science: Research into children's ideas. Routledge, London, UK, 224 p.
  7. Fortner, R., 2001, Climate change in school: Where does it fit and how ready are we? Canadian Journal of Environmental Education, 9, 82-98.
  8. Houghton, J., 2004, Global warming: The complete briefing. Cambridge University Press, Cambridge, UK, 382 p.
  9. Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A., 2001, Climate change 2001: The scientific basis. Cambridge University Press, Cambridge, UK, 83 p.
  10. Landis, J.R. and Koch, G.G., 1977, The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. https://doi.org/10.2307/2529310
  11. Lee, D.Y., Oh, E.S., Kim, H.B., and Jeong, J.W., 2013, Analysis of Carbon cycle concepts based on earth systems perspective of high school students. Journal of the Science Education, 37, 157-169. (in Korean) https://doi.org/10.21796/jse.2013.37.1.157
  12. Lee, T.W., Park, S.I., Gwon, S.M., Kim. W.S., Lee. Y.J., Lee, H.K., Jang, H.Y., and Kim, B.N., 2011, Earth Science I. Kyohak, Seoul, Korea, 304 p. (in Korean)
  13. Maes, B., 2010, Stop talking about "STEM" education! "TEAMS" is way cooler. http://bertmaes.wordpress.com/2010/10/21/teams/ (March 6th 2014)
  14. McNamara, C., 1998, Applied systems thinking. Proceedings of the 42nd annual conference on systems sciences. In Allen, J.K. et al. (eds.), International Society for the Systems Sciences, Atlanta, Georgia, USA, 1-26.
  15. Moon, B.C., Jeong, J.W., Kyung, J.B., Koh, Y.K., Youn, S.T., Kim, H.G., and Oh, K.H., 2004, Related conceptions to earth system and applying of systems thinking about Carbon cycle of the pre-service teachers. Journal of the Korean Earth Science Society, 25, 684-696. (in Korean)
  16. Moxnes, E. and Saysel, A.K., 2009, Misperceptions of global climate change: Information policies. Climate Change, 93, 15-37. https://doi.org/10.1007/s10584-008-9465-2
  17. National Research Council, 2012, A framework for K-12 Science education: Practices, crosscutting concepts, and core ideas. The National Academies Press, Washington, DC, USA, 386 p.
  18. Ossimitz, G. 2002, Stock-flow-thinking and reading stockflow-related graphs: An empirical investigation in dynamic thinking abilities. Proceedings of the 20th International Conference of the System Dynamics Society. System Dynamics Society, Albany, NY, USA, 1-26.
  19. Sterman, J.D., 2008, Risk communication on climate: Mental models and mass balance. Science, 322, 532-533. https://doi.org/10.1126/science.1162574
  20. Sterman, J.D. and Sweeney, L.B., 2002, Cloudy skies: Assessing public understanding of global warming. System Dynamics Review, 18, 207-240. https://doi.org/10.1002/sdr.242
  21. Uttal, D.H. and Cohen, C.A., 2012, Spatial thinking and STEM education: When, why, and how? Psychology of Learning and Motivation, 57, 147-181. https://doi.org/10.1016/B978-0-12-394293-7.00004-2
  22. Vongalis-Macrow, A., 2010, Developing pedagogies for teaching about climate change. The International Journal of Learning, 17, 237-247.

Cited by

  1. Effects of Systems Thinking on High School Students’ Science Self-Efficacy vol.37, pp.3, 2016, https://doi.org/10.5467/JKESS.2016.37.3.173