DOI QR코드

DOI QR Code

A Secure Frequency Computation Method over Multisets

안전한 다중집합 빈도 계산 기법

  • Received : 2014.04.07
  • Accepted : 2014.05.28
  • Published : 2014.06.30

Abstract

It is well known that data mining plays a crucial role in varities of real-world applications, by which extracts knowledge from large volume of datasets. Among functionalties provided by data mining, frequency mining over given multisets is a basic and essential one. However, most of users would like to obtain the frequency over their multisets without revealing their own multisets. In this work, we come up with a novel way to achive this goal and prove its security rigorously. Our scheme has several advantages over existing work as follows: Firstly, our scheme has the most efficient computational complexity in the cardinality of multisets. Further our security proof is rigorously in the simulation paradigm. Lastly our system assumption is general.

잘 알려진 바와 같이 데이터마이닝 (Data Mining)은 대용량의 데이터를 분석하여 필요한 정보를 추출하는데 있어서 매우 중요한 역할을 수행한다. 그중에서 집합에 포함된 원소들의 빈도수 (Frequency)를 알아내는 것은 데이터마이닝에서 기본적으로 지원되어야 하는 필수기능이다. 동시에 사용자가 소유한 다중집합 (혹은 집합) 자체의 공개를 원하지 않는 경우에 대비하여 다중집합의 원소는 공개하지 않고 빈도수만 계산하는 방법이 필요하다. 본 논문에서는 암호학적 도구를 기반으로 사용하여 이러한 조건을 만족하는 기법을 개발하고, 이것의 안전성을 엄밀하게 증명한다. 본 논문에서 제안된 기법은 기존 기법들과 달리 첫째, 시스템 가정이 일반적이고 둘째, 통신/연산 복잡도가 효율적이고 마지막으로 엄밀한 안전성 증명을 제시한다.

Keywords

References

  1. D. Agrawal and C. Aggawal, "On the design and quantification of privacy preserving data mining algorithms," in Proc. PODS 2001, pp. 247-255, 2001.
  2. R. Agrawal and R. Srikant, "Privacy preserving data mining," in Proc. SIGMOD 2000, pp. 439-450, 2000.
  3. R. Agrawal, R. Srikant, and D. Thomas, "Privacy preserving OLAP," in Proc. SIGMOD 2005, pp. 251-262, 2005.
  4. http://w2.eff.org/Privacy/AOL/
  5. A. Evmievski, R. Srikant, R. Agrawal, and J. Gehrke, "Privacy preserving mining of association rules," in Proc. KDD 2002, pp. 217-228, 2002.
  6. O. Goldreich, Foundations of cryptography: Vol. 2, Cambridge Press, 2004.
  7. Y. Lindell and B. Pinkas, "Privacy preserving data mining," in Proc. Crypto 2000, pp. 36-53, 2000.
  8. T. Luong and T. Ho, "Privacy preserving frequency mining in 2-party fully distributed setting," IEICE Trans. Inf. Syst. Vol. E93-D, No. 10, Oct. 2010.
  9. M. Kantarcoglu and J. Vaidya, "Privacy preserving naive Bayes classifier for horizontally partitioned data," in Proc. ICDM 2003, pp. 3-9, 2003.
  10. M. Kim, A. Mohaisen, J. H. Choen, and Y. Kim, "Private over-threshold aggregation protocols," in Proc. ICISC 2012, pp. 472-486, 2012.
  11. J. Sakuma and R. Wright, "Privacy preserving evaluation of generalization error and its application to model and attribute selection," in Proc. ACML 2009, pp. 338-353, 2009.
  12. J. Vaidya and C. Clifton, "Privacy prreserving association rule mining in vertically partitioned data," in Proc. SIGKDD 2002, pp. 639-644, 2002.
  13. J. Vaidya and C. Clifton, "Privacy preserving naive Bayes classifier for vertically partitioned data," in Proc. SDM 2004, pp. 522-526, 2004.
  14. V. Verykios, E. Bertino, I. Fovino, L. Provenza, Y. Saygin, and Y. Theodoridis, "State-of-the-art in privacy preserving data mining," in Proc. SIGMOD Record, vol. 3, no. 1, pp. 50-57, 2004.
  15. Y. Wang, S. Hur, Y. Park, and J.-H. Choi, "Efficient user selection algorithms for multiuser MIMO systems with zero-forcing dirty paper coding," J. Commun. Networks(JCN), vol. 13, no. 3, pp. 232-239, 2011. https://doi.org/10.1109/JCN.2011.6157432
  16. F. Wu, J. Liu, and S. Zhong, "An efficient protocol for private and accurate mining of support counts," Pattern Recognit. Lett., vol. 20, no. 1, pp. 80-86, 2009.
  17. Z. Yang, S. Zhong, and R. Wright, "Privacy preserving classification of consumer data without loss of accuracy," in Proc. SDM 2005, pp. 21-23. 2005.
  18. S. Zhong, Z. Yang, and T. Chen, "$\kappa$-anonymous data collections," J. Inf. Sci., vol. 179, no. 17, pp. 2948-2963, 2009. https://doi.org/10.1016/j.ins.2009.05.004
  19. S. Zhong, Z. Yang, and R. Wright, "Privacy-enhancing $\kappa$-anonymization of consumer data," in Proc. PODS 2005, pp. 139-147, 2005.