DOI QR코드

DOI QR Code

Knee Articular Cartilage Segmentation with Priors Based On Gaussian Kernel Level Set Algorithm

사전정보를 이용한 가우시안 커널 레벨 셋 알고리즘 기반 무릎 관절 연골 자기공명영상 분할기법

  • Received : 2014.03.15
  • Accepted : 2014.06.05
  • Published : 2014.06.30

Abstract

The thickness of knee joint cartilage causes most diseases of knee. Therefore, an articular cartilage segmentation of knee magnetic resonance imaging (MRI) is required to diagnose a knee diagnosis correctly. In particular, fully automatic segmentation method of knee joint cartilage enables an effective diagnosis of knee disease. In this paper, we analyze a well-known level-set based segmentation method in brain MRI, and apply that method to knee MRI with solving some problems from different image characteristics. The proposed method, a fully automatic segmentation in whole process, enables to process faster than previous semi-automatic segmentation methods. Also it can make a three-dimension visualization which provides a specialist with an assistance for the diagnosis of knee disease. In addition, the proposed method provides more accurate results than the existing methods of articular cartilage segmentation in knee MRI through experiments.

무릎 관절 연골은 두께가 얇아 대부분 무릎 질환의 원인이 되고 있다. 그러므로 무릎 자기공명영상에서 관절 연골 분할은 무릎 질환의 정확한 진단을 위한 필수조건이다. 특히 수동이 아닌 전자동 방식으로 무릎 관절 연골을 분할하여야만 효과적인 무릎 질환 진단을 할 수 있다. 본 논문에서는 뇌 자기공명영상에서 대표적으로 사용되는 레벨 셋 기반의 영상 분할 기법을 분석하여 무릎 자기공명영상에 적용 시 문제점을 파악하고 이를 해결함으로써, 무릎 자기공명영상에 레벨 셋 기반 영상분할 방식을 적용하였다. 이는 본 논문에서 제안하는 분할기법을 사용할 경우 무릎 관절 연골 분할에 대한 모든 과정이 전자동화 되어 기존 반자동화 방식보다 빠른 처리가 가능하며, 3차원 형상화를 통해 보다 정확한 진단에 도움을 줄 수 있다. 또한 우리는 제안하고 있는 분할기법이 기존 대표적인 무릎 관절 분할보다 더 높은 정확도를 갖는 것을 실험을 통해 확인할 수 있었다.

Keywords

References

  1. Z. A. Cohen, D. McCarthy, S. Kwak, P. Legrand, F. Fogarasi, E. Ciaccio, and G. Ateshian, "Knee cartilage topography, thickness, and contact areas from MRI: In-vitro calibration and in-vivo measurements," Osteoarthritis and Cartilage, vol. 7, no. 1, pp. 95-109, Jan. 1999. https://doi.org/10.1053/joca.1998.0165
  2. S. Lankton and A. Tannenbaum. "Localizing region-based active contours," IEEE Trans. Image Process., vol. 17, no. 11, pp. 2029-2039, Nov. 2008. https://doi.org/10.1109/TIP.2008.2004611
  3. L. Wang, L. He, A. Mishra, and C. Li, "Active contours driven by local Gaussian distribution fitting energy," Elsevier Signal Process., vol. 89, no. 12, pp. 2435-2447, Dec. 2009. https://doi.org/10.1016/j.sigpro.2009.03.014
  4. L. Wang, F. Shi, W. Lin, J. Gilmore, and D. Shen, "Automatic segmentation of neonatal images using convex optimization and coupled level sets," Elsevier NeuroImage, vol. 58, no. 3, pp. 805-817, Oct. 2011. https://doi.org/10.1016/j.neuroimage.2011.06.064
  5. T. Bui, C. Ahn, Y. Lee, and J. Shin, "Fully automatic segmentation based on localizing active contour method," in Proc. ACM IMCOM (ICUIMC)'14, no. 104, Siem Reap, Cambodia, Jan. 2014.
  6. B. Li, C. Chui, S. Chang, and S. Ong, "Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation," Elsevier Computers in Biology and Medicine, vol. 41, no. 1, pp. 1-10, Jan. 2011. https://doi.org/10.1016/j.compbiomed.2010.10.007
  7. D. Shen and C. Davatzikos. "HAMMER: Hierarchical attribute matching mechanism for elastic registration," IEEE Trans. Medical Imaging, vol. 21, no. 11, pp. 1421-1439, Nov. 2002. https://doi.org/10.1109/TMI.2002.803111
  8. B. Avants, P. Yushkevich, J. Pluta, D. Minkoff, M. Korczykowski, J. Detre, and J. Gee, "The optimal template effect in hippocampus studies of diseased populations," Elsevier Neuroimage, vol. 49, no. 3, pp. 2457- 2466, Feb. 2010. https://doi.org/10.1016/j.neuroimage.2009.09.062
  9. J. Tamez-Pena, J. Farber, P. Gonzalez, E. Schreyer, E. Schneider, and S. Totterman, "Unsupervised segmentation and quantification of anatomical knee features: data from the Osteoarthritis Initiative," IEEE Trans. Biomedical Eng., vol. 59, no. 4, pp. 1177-1186, Apr. 2012. https://doi.org/10.1109/TBME.2012.2186612
  10. A. Klein, J. Andersson, B. Ardekani, J. Ashburner, B. Anvants, M. Chiang, G. Christensen, D. Collins, J. Gee, P. Hellier, J. Song, M. Jenkinson, C. Lepage, D. Reckert, P. Thompson, T. Vercauteren, R. Woods, J. Mann, and R. Parsey, "Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration," Elsevier NeuroImage, vol. 46, no. 3, pp. 786-802, Jul. 2009. https://doi.org/10.1016/j.neuroimage.2008.12.037
  11. Osteo-Arithritis Initiative : http://oai.epi-ucsf.org
  12. M. Yang, Y. Hu, K. Lin, and C. Lin, "Segmentation techniques for tissue differentiation in MRI of Ophthalmology using fuzzy clustering algorithms," Elsevier Magnetic Resonance Imaging, vol. 20, no. 2, pp. 173-179, Feb. 2002. https://doi.org/10.1016/S0730-725X(02)00477-0