DOI QR코드

DOI QR Code

Micro-structure and NTCR Characteristics of Copper Manganite Thin Films Fabricated by MOD Process

MOD법으로 제조된 Copper Manganite 박막의 구조 및 NTCR 특성

  • Lee, Kui Woong (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeon, Chang Jun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young Hun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji Sun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Nam, Joong Hee (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong Ho (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong Hoo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Yoon, Jong-Won (Department of Advanced Materials Science and Engineering, Dankook University)
  • 이귀웅 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 전창준 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 정영훈 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 윤지선 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 남중희 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 조정호 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 백종후 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 윤종원 (단국대학교 신소재공학과)
  • Received : 2014.06.02
  • Accepted : 2014.06.18
  • Published : 2014.07.01

Abstract

Copper manganite thin films were fabricated on $SiN_x/Si$ substrate by metal organic decomposition (MOD) process. They were burned-out at $400^{\circ}C$ and annealed at various temperatures ($400{\sim}800^{\circ}C$) for 1h in ambient atmosphere. Their micro-structure and negative temperature coefficient of resistance (NTCR) characteristics were analyzed for micro-bolometer application. The copper manganite film with a cubic spinel structure was well developed at $500^{\circ}C$ which confirmed by XRD and HRTEM analysis. It showed a low resistivity ($47.5{\Omega}{\cdot}cm$) at room temperature and high NTCR characteristics of $-4.12%/^{\circ}C$ and $-2.15%/^{\circ}C$ at room temperature and $85^{\circ}C$, implying a good thin film for micro-bolometer application. Furthermore, its crystallinity was enhanced with increasing temperature to $600^{\circ}C$. However, the appearance of secondary phase at temperatures higher than $600^{\circ}C$ lead to deteriorate the NTCR characteristics.

Keywords

References

  1. S. S. Falahatgar, F. E. Ghodsi, F. Z. Tepehan, G. G. Tepehan, and I. Turhan, Appl. Surf. Sci., 289, 289 (2014). https://doi.org/10.1016/j.apsusc.2013.10.153
  2. N. M. Deraz and O. H. Abd-Elkader, Int. J. Electrochem. Sci., 8, 10112 (2013).
  3. C. H. Chen, X. Yi, J. Zhang, and X. Zhao, Infrared Physics & Technology, 42, 87 (2001). https://doi.org/10.1016/S1350-4495(01)00058-5
  4. K. Park and D. Y. Bang, J. Mater. Sci: Mater. Electron., 14, 81 (2003). https://doi.org/10.1023/A:1021900618988
  5. R. Metz, J. Mater. Sci., 35, 4705 (2000). https://doi.org/10.1023/A:1004851022668
  6. S. A. Kanade and V. Puri, Mater. Lett., 60, 1428 (2006). https://doi.org/10.1016/j.matlet.2005.11.042
  7. J. M. Varghese, A. Seema, and K. R. Dayas, J. Electroceram., 22, 436 (2009). https://doi.org/10.1007/s10832-008-9489-z
  8. J. Ryu, K. Y. Kim, J. J. Choi, B. D. Hahn, W. H. Yoon, B. K. Lee, D. S. Park, and C. Park, J. Am. Ceram. Soc., 92, 3084 (2009). https://doi.org/10.1111/j.1551-2916.2009.03300.x
  9. S. W. Ko, J. Li, N. J. Podraza, E. C. Dickey, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 94, 516 (2011). https://doi.org/10.1111/j.1551-2916.2010.04097.x
  10. S. W. Ko, H. M. Schulze, D. B. S. John, K. J. Podraza, E. C. Dickey, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 95, 2562 (2012). https://doi.org/10.1111/j.1551-2916.2012.05201.x
  11. H. J. Sun, J. KIEEME, 23, 311 (2010).
  12. D. A. Kukuruznyak, S. A. Bulkley, K. A. Omland, F. S. Ohuchi, and M. C. Gregg, Thin Solid Films, 385, 89 (2001). https://doi.org/10.1016/S0040-6090(00)01890-3
  13. A. W. Burton, K. Ong, T. Rea, and I. Y. Chan, Micropor. Mesopor. Mater., 117, 75 (2009). https://doi.org/10.1016/j.micromeso.2008.06.010
  14. K. H. Cho, C. H. Choi, Y. H. Jeong, S. Nahm, C. Y. Kang, S. J. Yoon, and H. J. Lee, J. Electrochem. Soc., 155, G148 (2008). https://doi.org/10.1149/1.2936260
  15. E. Alfonso, J. Olaya, and G. Cubillos, Crystallization-Science and Technology (Intech, Colombia, 2012) p. 397.
  16. A. A. Ogwu, T. H. Darma, and E. Bouquerel, J. Achiev. Mater. Manuf. Eng., 24, 172 (2007).