DOI QR코드

DOI QR Code

Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice

  • Saputra, Devina (Inhalation Toxicology Center, Korea Institute of Toxicology) ;
  • Yoon, Jin-Ha (Institute for Occupational Health, Yonsei University College of Medicine) ;
  • Park, Hyunju (Inhalation Toxicology Center, Korea Institute of Toxicology) ;
  • Heo, Yongju (Inhalation Toxicology Center, Korea Institute of Toxicology) ;
  • Yang, Hyoseon (Inhalation Toxicology Center, Korea Institute of Toxicology) ;
  • Lee, Eun Ji (Inhalation Toxicology Center, Korea Institute of Toxicology) ;
  • Lee, Sangjin (Inhalation Toxicology Center, Korea Institute of Toxicology) ;
  • Song, Chang-Woo (Inhalation Toxicology Center, Korea Institute of Toxicology) ;
  • Lee, Kyuhong (Inhalation Toxicology Center, Korea Institute of Toxicology)
  • Received : 2014.03.14
  • Accepted : 2014.06.15
  • Published : 2014.06.30

Abstract

An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-${\gamma}$ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be $12.5{\mu}g/m^3$) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions.

Keywords

References

  1. Chiu, K.H., Lee, W.L., Chang, C.C., Chen, S.C., Chang, Y.C., Ho, M.N., Hsu, J.F. and Liao, P.C. (2010) A label-free differential proteomic analysis of mouse bronchoalveolar lavage fluid exposed to ultrafine carbon black. Anal. Chim. Acta, 673, 160-166. https://doi.org/10.1016/j.aca.2010.05.041
  2. Simko, M. and Mattsson, M.O. (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part. Fibre Toxicol., 7, 42. https://doi.org/10.1186/1743-8977-7-42
  3. Sager, T.M. and Castranova, V. (2009) Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part. Fibre Toxicol., 6, 15. https://doi.org/10.1186/1743-8977-6-15
  4. Hubbs, A.F., Mercer, R.R., Benkovic, S.A., Harkema, J., Sriram, K., Schwegler-Berry, D., Goravanahally, M.P., Nurkiewicz, T.R., Castranova, V. and Sargent, L.M. (2011) Nanotoxicology-- a pathologist's perspective. Toxicol. Pathol., 39, 301-324. https://doi.org/10.1177/0192623310390705
  5. Lin, W., Huang, W., Zhu, T., Hu, M., Brunekreef, B., Zhang, Y., Liu, X., Cheng, H., Gehring, U., Li, C. and Tang, X. (2011) Acute respiratory inflammation in children and black carbon in ambient air before and during the 2008 Beijing Olympics. Environ. Health Perspect., 119, 1507-1512. https://doi.org/10.1289/ehp.1103461
  6. Ramage, L. and Guy, K. (2004) Expression of C-reactive protein and heat-shock protein-70 in the lung epithelial cell line A549, in response to $PM_{10}$ exposure. Inhalation Toxicol., 16, 447-452. https://doi.org/10.1080/08958370490439614
  7. Donaldson, K., Stone, V. and MacNee, W. (1999) The toxicology of ultrafine particles (In: Maynard RL, Howard CV, Eds). Particulate matter: properties and effects upon health. Oxford: Bios Scientific.
  8. Tong, H., McGee, J.K., Saxena, R.K., Kodavanti, U.P., Devlin, R.B. and Gilmour, M.I. (2009) Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol. Appl. Pharmacol., 239, 224-232. https://doi.org/10.1016/j.taap.2009.05.019
  9. Donaldson, K., Stone, V., Clouter, A., Renwick, L. and Mac-Nee, W. (2001) Ultrafine particles. Occup. Environ. Med., 58, 211-216. https://doi.org/10.1136/oem.58.3.211
  10. Bourdon, J.A., Halappanavar, S., Saber, A.T., Jacobsen, N.R., Williams, A., Wallin, H., Vogel, U. and Yauk, C.L. (2012) Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis. Toxicol. Sci., 127, 474-484. https://doi.org/10.1093/toxsci/kfs119
  11. Tomimori, Y., Muto, T., Saito, K., Tanaka, T., Maruoka, H., Sumida, M., Fukami, H. and Fukuda, Y. (2003) Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice. Eur. J. Pharmacol., 478, 179-185. https://doi.org/10.1016/j.ejphar.2003.08.050
  12. Decologne, N., Wettstein, G., Kolb, M., Margetts, P., Garrido, C., Camus, P. and Bonniaud, P. (2010) Bleomycin induces pleural and subpleural fibrosis in the presence of carbon particles. Eur. Respir. J., 35, 176-185. https://doi.org/10.1183/09031936.00181808
  13. Zhou, X.M., Zhang, G.C., Li, J.X. and Hou, J. (2007) Inhibitory effects of Hu-qi-yin on the bleomycin-induced pulmonary fibrosis in rats. J. Ethnopharmacol., 111, 255-264. https://doi.org/10.1016/j.jep.2006.11.029
  14. Kamata, H., Tasaka, S., Inoue, K., Miyamoto, K., Nakano, Y., Shinoda, H., Kimizuka, Y., Fujiwara, H., Ishii, M., Hasegawa, N., Takamiya, R., Fujishima, S., Takano, H. and Ishizaka, A. (2011) Carbon black nanoparticles enhance bleomycininduced lung inflammatory and fibrotic changes in mice. Exp. Biol. Med. (Maywood), 236, 315-324. https://doi.org/10.1258/ebm.2011.010180
  15. Li, Y.J., Azuma, A., Usuki, J., Abe, S., Matsuda, K., Sunazuka, T., Shimizu, T., Hirata, Y., Inagaki, H., Kawada, T., Takahashi, S., Kudoh, S. and Omura, S. (2006) EM703 improves bleomycin-induced pulmonary fibrosis in mice by the inhibition of TGF-beta signaling in lung fibroblasts. Respir. Res., 7, 16. https://doi.org/10.1186/1465-9921-7-16
  16. Vesterdal, L.K., Folkmann, J.K., Jacobsen, N.R., Sheykhzade, M., Wallin, H., Loft, S. and Moller, P. (2010) Pulmonary exposure to carbon black nanoparticles and vascular effects. Part. Fibre Toxicol., 7, 33. https://doi.org/10.1186/1743-8977-7-33
  17. Gu, J., Bai, Z., Liu, A., Wu, L., Xie, Y., Li, W., Dong, H. and Zhang, X. (2010) Characterization of Atmospheric Organic Carbon and Element Carbon of $PM_{2.5}$ and $PM_{10}$ at Tianjin, China. Aerosol Air Qual. Res., 10, 167-176.
  18. Seinfeld, J.H. and Pandis, S.N (1998) Atmospheric chemistry and physics: From air pollution to climate change, John Wiley, New York, pp. 1-1232.
  19. Kim, S.N., Lee, J., Yang, H.S., Cho, J.W., Kwon, S., Kim, Y.B., Her, J.D., Cho, K.H., Song, C.W. and Lee, K. (2010) Dose-response Effects of Bleomycin on Inflammation and Pulmonary Fibrosis in Mice. Toxicol. Res., 26, 217-222. https://doi.org/10.5487/TR.2010.26.3.217
  20. Rybkin, I.I., Zhou, Y., Volaufova, J., Smagin, G.N., Ryan, D.H. and Harris, R.B. (1997) Effect of restraint stress on food intake and body weight is determined by time of day. Am. J. Physiol., 273, 1612-1622.
  21. Harris, R.B., Zhou, J., Youngblood, B.D., Rybkin, I.I., Smagin, G.N. and Ryan, D.H. (1998) Effect of repeated stress on body weight and body composition of rats fed low- and highfat diets. Am. J. Physiol., 275, R1928-1938.
  22. Smith, R.E., Strieter, R.M., Phan, S.H., Lukacs, N. and Kunkel, S.L. (1998) TNF and IL-6 mediate MIP-1alpha expression in bleomycin-induced lung injury. J. Leukocyte Biol., 64, 528-536. https://doi.org/10.1002/jlb.64.4.528
  23. Moeller, A., Ask. K., Warburton, D., Gauldie, J. and Kolb, M. (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol., 40, 362-382. https://doi.org/10.1016/j.biocel.2007.08.011
  24. Hernnas, J., Nettelbladt, O., Bjermer, L., Sarnstrand, B., Malmstrom, A. and Hallgren, R. (1992) Alveolar accumulation of fibronectin and hyaluronan precedes bleomycininduced pulmonary fibrosis in the rat. Eur. Respir. J., 5, 404-410.
  25. Chen, Y.L., Zhang, X., Bai, J., Gai, L., Ye, X.L., Zhang, L., Xu, Q., Zhang, Y.X., Xu, L., Li, H.P. and Ding, X. (2013) Sorafenib ameliorates bleomycin-induced pulmonary fibrosis: potential roles in the inhibition of epithelial-mesenchymal transition and fibroblast activation. Cell Death Dis., 4, e665. https://doi.org/10.1038/cddis.2013.154
  26. Zhao, J., Shi, W., Wang, Y.L., Chen, H., Bringas, P, Jr., Datto, M.B., Frederick, J.P., Wang, X.F. and Warburton, D. (2002) Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 282, L585-593. https://doi.org/10.1152/ajplung.00151.2001
  27. Segel, M.J., Izbicki, G., Cohen, P.Y., Or, R., Christensen, T.G., Wallach-Dayan, S.B. and Breuer, R. (2003) Role of interferon-gamma in the evolution of murine bleomycin lung fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol., 285, L1255-1262. https://doi.org/10.1152/ajpcell.00149.2003
  28. Kikuchi, N., Ishii, Y., Morishima, Y., Yageta, Y., Haraguchi, N., Itoh, K., Yamamoto, M. and Hizawa, N. (2010) Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance. Respir. Res., 11, 31. https://doi.org/10.1186/1465-9921-11-31
  29. Kushwah, R., Gagnon, S. and Sweezey, N.B. (2014) T cell unresponsiveness in a pediatric cystic fibrosis patient: a case report. Allergy Asthma Clin. Immunol., 10, 2. https://doi.org/10.1186/1710-1492-10-2
  30. Izbicki, G., Segel, M.J., Christensen, T.G., Conner, M.W. and Breuer, R. (2002) Time course of bleomycin-induced lung fibrosis. Int. J. Exp. Pathol., 83, 111-119. https://doi.org/10.1046/j.1365-2613.2002.00220.x
  31. Niwa, Y., Hiura, Y., Sawamura, H. and Iwai, N. (2008) Inhalation exposure to carbon black induces inflammatory response in rats. Circ. J., 72, 144-149. https://doi.org/10.1253/circj.72.144
  32. Adamson, I.Y. and Prieditis, H.L. (1995) Response of mouse lung to carbon deposition during injury and repair. Environ. Health Perspect., 103, 72-76. https://doi.org/10.1289/ehp.9510372
  33. Elsaesser, A. and Howard, C.V. (2012) Toxicology of nanoparticles. Adv. Drug Delivery Rev., 64, 129-137. https://doi.org/10.1016/j.addr.2011.09.001
  34. Inoue, K., Yanagisawa, R., Koike, E., Nakamura, R., Ichinose, T., Tasaka, S., Kiyono, M. and Takano, H. (2011) Effects of carbon black nanoparticles on elastase-induced emphysematous lung injury in mice. Basic Clin. Pharmacol. Toxicol., 108, 234-240. https://doi.org/10.1111/j.1742-7843.2010.00638.x
  35. Alexander, D.J., Collins, C.J., Coombs, D.W., Gilkison, I.S., Hardy, C.J., Healey, G., Karantabias, G., Johnson, N., Karlsson, A., Kilgour, J.D. and McDonald, P. (2008) Association of Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticals. Inhalation Toxicol., 20, 1179-1189. https://doi.org/10.1080/08958370802207318
  36. Begum, B.A., Hossain, A., Nahar, N., Markwitz, A. and Hopke, P.K. (2012) Organic and Black Carbon in PM2.5 at an Urban Site at Dhaka, Bangladesh. Aerosol Air Qual. Res., 12, 1062-1072.
  37. Won, S.R., Lim, J.Y., Shim, I.K., Kim, E.J., Choi, A.R., Han, J.S. and Lee, W.S. (2012) Characterization of $PM_{2.5}$ and $PM_{10}$ concentration distribution at public facilities in Korea. J. Korean Soc. Indoor Environ., 9, 229-238.
  38. Franklin, M., Zeka, A. and Schwartz, J. (2007) Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. J. Exposure Sci. Environ. Epidemiol., 17, 279-287. https://doi.org/10.1038/sj.jes.7500530

Cited by

  1. Immunomodulation by gastrointestinal carbon black nanoparticle exposure in ovalbumin T cell receptor transgenic mice vol.10, pp.10, 2016, https://doi.org/10.1080/17435390.2016.1225131
  2. Ozonized carbon black induces mitochondrial dysfunction and DNA damage vol.32, pp.3, 2016, https://doi.org/10.1002/tox.22295
  3. Crystal Formation in Inflammation vol.34, pp.1, 2016, https://doi.org/10.1146/annurev-immunol-041015-055539
  4. Aeroparticles, Composition, and Lung Diseases vol.7, pp.1664-3224, 2016, https://doi.org/10.3389/fimmu.2016.00003
  5. Autophagic flux blockage in alveolar epithelial cells is essential in silica nanoparticle-induced pulmonary fibrosis vol.10, pp.2, 2019, https://doi.org/10.1038/s41419-019-1340-8