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Abstract

We discuss some interesting sublattices of interval-valued fuzzy subgroups. In our main result,
we consider the set of all interval-valued fuzzy normal subgroups with finite range that attain
the same value at the identity element of the group. We then prove that this set forms a modular
sublattice of the lattice of interval-valued fuzzy subgroups. In fact, this is an interval-valued
fuzzy version of a well-known result from classical lattice theory. Finally, we employ a lattice
diagram to exhibit the interrelationship among these sublattices.
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1. Introduction

In 1965, Zadeh [1] introduced the concept of a fuzzy set, and later generalized this to the
notion of an interval-valued fuzzy set [2]. Since then, there has been tremendous interest in this
subject because of the diverse range of applications, from engineering and computer science
to social behavior studies. In particular, Gorzalczany [3] developed an inference method using
interval-valued fuzzy sets.

In 1995, Biswas [4] studied interval-valued fuzzy subgroups. Subsequently, a number of
researchers applied interval-valued fuzzy sets to algebra [5-11], and Lee et al. [12] furthered
the investigation of interval-valued fuzzy subgroups in the sense of a lattice.

Later, in 1999, Mondal and Samanta [13] applied interval-valued fuzzy sets to topology, and
Jun et al. [14] studied interval-valued fuzzy strong semi-openness and interval-valued fuzzy
strong semicontinuity. Furthermore, Min [15-17] investigated interval-valued fuzzy almost
M-continuity, the characterization of interval-valued fuzzy m-semicontinuity and interval-
valued fuzzy mβ-continuity, and then Min and Yoo [18] researched interval-valued fuzzy
mα-continuity. In particular, Choi et al. [19] introduced the concept of an interval-valued
smooth topology, and described some relevant properties.

In this paper, we discuss some interesting sublattices of the lattice of interval-valued fuzzy
subgroups of a group.

In the main result of our paper, we consider the set of all interval-valued fuzzy normal
subgroups with finite range that attain the same value at the identity element of the group. We
prove that this set forms a modular sublattice of the lattice of interval-valued fuzzy subgroups.
In fact, this is an interval-valued fuzzy version of a well-known result from classical lattice
theory. Finally, we use a lattice diagram to exhibit the interrelationship among these sublattices.
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2. Preliminaries

In this section, we list some basic concepts and well-known
results which are needed in the later sections. Throughout this
paper, we will denote the unit interval [0, 1] as I . For any
ordinary subset A on a set X , we will denote the characteristic
function of A as χA.

Let D(I) be the set of all closed subintervals of the unit
interval [0, 1]. The elements of D(I) are generally denoted
by capital letters M,N, · · ·, and note that M = [ML,MU ],
where ML and MU are the lower and the upper end points
respectively. Especially, we denote 0 = [0, 0], 1 = [1, 1], and a
= [a, a] for every a ∈ (0, 1). We also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ ML = NL,MU =

NU ),

(ii) (∀M,N ∈ D(I)) (M = N ≤ ML ≤ NL,MU ≤
NU ).

For every M ∈ D(I), the complement of M , denoted by MC ,
is defined by MC = 1−M = [1−MU , 1−ML](See [13]).

Definition 2.1 [2,3]. A mapping A : X → D(I) is called
an interval-valued fuzzy set (IVFS) in X , denoted by A =

[AL, AU ], if AL, AL ∈ IX such that AL ≤ AU , i.e., AL(x) ≤
AU (x) for each x ∈ X , where AL(x)[resp AU (x)] is called
the lower [resp upper ] end point of x to A. For any [a, b] ∈
D(I), the interval-valued fuzzy A in X defined by A(x) =

[AL(x), AU (x)] = [a, b] for each x ∈ X is denoted by ˜[a, b]
and if a = b, then the IVFS ˜[a, b] is denoted by simply ã. In
particular, 0̃ and 1̃ denote the interval -valued fuzzy empty set

and the interval -valued fuzzy whole set in X , respectively.
We will denote the set of all IVFSs in X as D(I)X . It is

clear that set A = [A,A] ∈ D(I)X for each A ∈ IX .

Definition 2.2 [13]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then

(i) A ⊂ B iff AL ≤ BL and AU ≤ BU .

(ii) A = B iff A ⊂ B and B ⊂ A.

(iii) AC = [1−AU , 1−AL].

(iv) A ∪B = [AL ∨BL, AU ∨BU ].

(iv)′
⋃
α∈Γ

Aα = [
∨
α∈Γ

ALα,
∨
α∈Γ

AUα ].

(v) A ∩B = [AL ∧BL, AU ∧BU ].

(v)′
⋂
α∈Γ

Aα = [
∧
α∈Γ

ALα,
∧
α∈Γ

AUα ].

Result 2.A[13, Theorem 1]. Let A,B,C ∈ D(I)X and let
{Aα}α∈Γ ⊂ D(I)X . Then

(a) 0̃ ⊂ A ⊂ 1̃.

(b) A ∪B = B ∪A , A ∩B = B ∩A.

(c) A∪(B∪C) = (A∪B)∪C ,A∩(B∩C) = (A∩B)∩C.

(d) A,B ⊂ A ∪B , A ∩B ⊂ A,B.

(e) A ∩ (
⋃
α∈Γ

Aα) =
⋃
α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂
α∈Γ

Aα) =
⋂
α∈Γ

(A ∪Aα).

(g) (0̃)c = 1̃ , (1̃)c = 0̃.

(h) (Ac)c = A.

(i) (
⋃
α∈Γ

Aα)c =
⋂
α∈Γ

Acα , (
⋂
α∈Γ

Aα)c =
⋃
α∈Γ

Acα.

Definition 2.3 [8]. Let (X, ·) be a groupoid and letA ∈ D(I)X .
Then A is called an interval-valued fuzzy subgroupoid (IVGP)
in X if

AL(xy) ≥ AL(x) ∧AL(y)

and
AU (xy) ≥ AU (x) ∧AU (y),∀x, y ∈ X.

It is clear that 0̃, 1̃ ∈ IVGP(X).

Definition 2.4 [4]. Let A be an IVFs in a group G. Then A
is called an interval-valued fuzzy subgroup (IVG) in G if it
satisfies the conditions : For any x, y ∈ G,

(i) AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥ AU (x) ∧
AU (y).

(ii) AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x).
We will denote the set of all IVGs of G as IVG(G).

Result 2.A [8, Proposition 4.3]. Let G be a group and let
{Aα}α∈Γ ⊂ IVG(G). Then

⋂
α∈ΓAα ∈ IVG(G).

Result 2.B [4, Proposition 3.1]. Let A be an IVG in a group
G. Then

(a) A(x−1) = A(x),∀x ∈ G.
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(b) AL(e) ≥ AL(x) and AU (e) ≥ AU (x),∀x ∈ G, where
e is the identity of G.

Result 2.C [8, Proposition 4.2]. Let G be a group and let
A ⊂ G. Then A is a subgroup of G if and only if [χA, χA] ∈
IVG(G).

Definition 2.5 [8]. LetA be an IVFS in a setX and let λ, µ ∈ I
with λ ≤ µ. Then the set A[λ,µ] = {x ∈ X : AL(x) ≥ λ and
AU (x) ≥ µ} is called a [λ, µ]-level subset of A.

3. Lattices of Interval-Valued Fuzzy Subgroups

In this section, we study the lattice structure of the set of interval-
valued fuzzy subgroups of a given group. From Definitions 2.1
and 2.2, we can see that for a set X , D(I)X forms a com-
plete lattice under the usual ordering of interval-valued fuzzy
inclusion ⊂, where the inf and the sup are the intersection and
the union of interval-valued fuzzy sets, respectively. To con-
struct the lattice of interval-valued fuzzy subgroups, we define
the inf of a family Aα of interval-valued fuzzy subgroups to
be the intersection

⋂
Aα. However, the sup is defined as the

interval-valued fuzzy subgroup generated by the union
⋃
Aα

and denoted by (
⋃
Aα). Thus we have the following result.

Proposition 3.1. Let G be a group. Then IVG(G) forms a
complete lattice under the usual ordering of interval-valued
fuzzy set inclusion ⊂.

Proof. Let {Aα}α∈Γ be any subset of IVG(G). Then, by Re-
sult 2.A,

⋂
α∈Γ ∈ IVG(G). Moreover, it is clear that

⋂
α∈ΓAα

is the largest interval-valued fuzzy subgroup contained in Aα
for each α ∈ Γ. So

∧
α∈ΓAα =

⋂
α∈ΓAα. On the other

hand, we can easily see that (
⋃
α∈ΓAα) is the least interval-

valued fuzzy subgroup containing Aα for each α ∈ Γ. So∨
α∈ΓAα = (

⋃
α∈ΓAα). Hence IVG(G) is a complete lattice.

Next we construct certain sublattice of the lattice IVG(G). In
fact, these sublattices reflect certain peculiarities of the interval-
valued fuzzy setting. For a group G, let IVGf (G) = {A ∈
IVG(G) : Im A is finite } and let IVG[s, t](G) = {A ∈
IVG(G) : A(e) = [s, t]}, where e is the identity of G. Then
it is clear that IVGf (G)[resp. IVG[s, t](G)] is a sublattice of
IVG(G). Moreover, IVGf (G)∩ IVG[s, t](G) is also a sublat-
tice of IVG(G).

Definition 3.2[11]. Let (X, ·) be a groupoid and let A,B ∈
D(I)X . Then the interval -valued fuzzy product of A and B ,
denoted by A ◦ B, is an IVFS in X defined as follows : For
each x ∈ X ,

(A ◦B)(x) =


[
∨
yz=x

[AL(y) ∧BL(z)],∨
yz=x

[AU (y) ∧BU (z)] if yz = x,

[0, 0] otherwise.

Now to obtain our main results, we start with following two
lemmas.

Lemma 3.3. Let G be a group and let A,B ∈ IVG(G). Then
for each [λ, µ] ∈ D(I), A[λ, µ] ·B[λ, µ] ⊂ (A ◦B)[λ, µ].

Proof. Let z ∈ A[λ, µ] · B[λ, µ]. Then there exist x0, y0 ∈ G
such that z = x0y0. Thus AL(x0) ≥ λ, AU (x0) ≥ µ and
AL(y0) ≥ λ, AU (y0) ≥ µ. So

(A ◦B)L(z) =
∨
z=xy

[AL(x) ∧BL(y)]

≥ AL(x0) ∧BL(y0) ≥ λ

and

(A ◦B)U (z) =
∨
z=xy

[AU (x) ∧BU (y)]

≥ AU (x0) ∧BU (y0) ≥ µ.

Thus z ∈ (A◦B)[λ, µ]. Hence A[λ, µ] ·B[λ, µ] ⊂ (A◦B)[λ, µ].

The following is the converse of Lemma 3.2.

Lemma 3.4. Let G be a group and let A,B ∈IVG(G). If
Im A and Im B are finite, then for each [λ, µ] ∈ D(I), (A ◦
B)[λ, µ] ⊂ A[λ, µ] ·B[λ, µ].

Proof. Let z ∈ (A ·B)[λ, µ]. Then

A ◦BL(z) =
∨
z=xy[AL(x) ∧BL(y)] ≥ λ

and

A ◦BU (z) =
∨
z=xy[AU (x) ∧BU (y)] ≥ µ.

Since Im A and Im B are finite, there exist x0, y0 ∈ G with
z = x0y0 such that∨

z=xy[AL(x) ∧BL(y)] = AL(x0) ∧BL(y0) ≥ λ
and∨

z=xy[AU (x) ∧BU (y)] = AL(x0) ∧BU (y0) ≥ λ.
Thus AL(x0) ≥ λ, AU (x0) ≥ µ and BL(y0) ≥ λ, BL(y0) ≥
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µ. So x0 ∈ A[λ, µ] and y0 ∈ B[λ, µ], i.e., z = x0y0 ∈
A[λ, µ] · B[λ, µ]. Hence (A ◦ B)[λ, µ] ⊂ A[λ, µ] · B[λ, µ]. This
completes the proof.

The following is the immediate result of Lemmas 3.3 and 3.4.

Proposition 3.5. Let G be a group and let A,B ∈ IVG(G). If
Im A and Im B are finite, then for each [λ, µ] ∈ D(I),

(A ◦B)[λ, µ] = A[λ, µ] ·B[λ, µ].

Definition 3.6 [8]. LetG be a group and letA ∈ IVG(G). Then
A is called interval-valued fuzzy normal subgroup (IVNG) of
G if A(xy) = A(yx) for any x, y ∈ G.

We will denote the set of all IVNGs of G as IFNG(G). It is
clear that if G is abelian, then every IVG of G is an IVNG of
G.

Result 3.A [6, Proposition 2.13]. Let G be a group, let A ∈
IFNG(G) and let [λ, µ] ∈ D(I) such that λ ≤ AL(e) and
µ ≤ AU (e). Then A[λ, µ] CG, where A[λ, µ] CG means that
A[λ, µ] is a normal subgroup of G.

Result 3.B [6, Proposition 2.17]. Let G be a group and let
A ∈ IVG(G). If A[λ, µ] CG for each [λ, µ] ∈ Im A, Then A ∈
IVNG(G).

The following is the immediate result of Results 3.A and 3.B.

Theorem 3.7. LetG be a group and letA ∈ IVG(G). ThenA ∈
IVNG(G) if and only if for each [λ, µ] ∈ Im A, A[λ, µ] CG.

Result 3.C[8, Proposition 5.3]. Let G be a group and let A ∈
IVNG(G). If B ∈ IVG(G), then B ◦A ∈IVG(G).

The following is the immediate result of Result 2.A and Def-
inition 3.6.

Proposition 3.8. Let G be a group and let A,B ∈ IVNG(G).
Then A ∩B ∈ IVNG(G).

It is well-known that the set of all normal subgroups of a
group forms a sublattice of the lattice of its subgroups. As an
interval-valued fuzzy analog of this classical result we obtain
the following result.

Theorem 3.9. Let G be a group and let IVNf [s, t](G) =

{A ∈ IVNG(G) : Im A is finite and A(e) = [s, t]}. Then
IVNf [s, t](G) is a sublattice of IVGf (G)∩ IVG[s, t](G). Hence
IVNf [s, t](G) is a sublattice of IVG(G).
Proof. LetA,B ∈ IVNf [s, t](G). Then, by Result 3.C,A◦B ∈
IVG(G). Let z ∈ G. Then

(A ◦B)L(z) =
∨
z=xy

[AL(x) ∧BL(y)]

≥ AL(z) ∧BL(e) = AL(z) ∧AL(e)

[Since A(e) = (s, t) = B(e)]

= AL(z). [By Result 2.B]

Similarly, we have (A ◦ B)U (z) ≥ AU (z). Thus A ⊂ A ◦ B.
By the similar arguments, we have B ⊂ A ◦B.

Let C ∈ IVG(G) such that A ⊂ C and B ⊂ C. Let z ∈ G.
Then
(A ◦B)L(z) =

∨
z=xy[AL(x) ∧BL(y)]

≤
∨
z=xy[CL(x) ∧ CL(y)] [Since A ⊂ C and B ⊂ C]

≤ CL(xy) [Since C ∈ IVG(G)]
= CL(z).

Similarly, we have (A ◦ B)U (z) ≤ CU (z). Thus A ◦ B ⊂ C.
So A ◦B = A ∨B.

Now let [λ, µ] ∈ D(I). SinceA,B ∈ IVNG(G),A[λ, µ]CG

andB[λ, µ]CG. ThenA(λ,µ) ◦B[λ, µ]CG. By Proposition 3.5,
(A ◦B)[λ, µ] CG. Thus, by Theorem 3.7, A ◦B ∈ IVNG(G).
So A ∨ B ∈ IVNf [s, t](G). From Proposition 3.8, it is clear
that A ∧B ∈ IVNG(G). Thus A ∧B ∈ IVNf [s,t](G). Hence
IVNf [s,t](G) is a sublattice of IVGf∩ IVG[s,t](G), and there-
fore of IVG(G). This complete the proof.

The relationship of different sublattice of the lattice of interval-
valued fuzzy subgroup discussed herein can be visualized by
the lattice diagram in Figure 1.

IVG(G)
◦

IVG[s, t](G) ◦ ◦ IVGf (G)

◦ IVGf (G)∩ IVG[s, t]

◦ IVGf [s, t](G)

"
"

"
"
"

b
b

b
bb

"
"

"
"

"

b
b

b
b

b

Figure 1.

It is also well-known[20, Theorem I.11] that the sublattice of
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normal subgroups of a group is modular. As an interval-valued
fuzzy version to the classical theoretic result, we prove that
IVN([s, t](G) forms a modular lattice.

Result 3.D [11, Lemma 3.2]. Let G be a group and let A ∈
IVG(G). If for any x, y ∈ G, AL(x) < AL(y) and AU (x) <

AU (y), then A(xy) = A(x) = A(yx).

Definition 3.10 [20,21]. A lattice (L,∧,∨) is said to be modu-
lar if for any x, y, z ∈ Lwith x ≤ z[resp. x ≥ z], x∨(y∧z) =

(x ∨ y) ∧ z[resp. x ∧ (y ∨ z) = (x ∧ y) ∨ z].

In any lattice L, it is well-known[21, Lemma I.4.9] that for
any x, y, z ∈ L if x ≤ z[resp. x ≥ z], then x ∨ (y ∧ z) ≤
(x ∨ y) ∧ z[resp. x ∧ (y ∨ z) ≥ (x ∧ y) ∨ z]. The inequality is
called the modular inequality.

Theorem 3.11. The lattice IVNf [s, t](G) is modular.
Proof. Let A,B,C ∈ IVNf [s, t](G) such that A ⊃ C. Then,
by the modular inequality, (A∧B)∨C ⊂ A∧(B∨C). Assume
that A∧ (B ∨C) 6⊂ (A∧B)∨C, i.e., there exists z ∈ G such
that

[A ∧ (B ∨ C)]L(z) > [(A ∧B) ∨ C]L(z)

and
[A ∧ (B ∨ C)]U (z) > [(A ∧B) ∨ C]U (z).

Since Im B and Im C are finite, there exist x0, y0 ∈ G with
z = x0y0 such that

(B ∨ C)(z) = (B ◦ C)(z)

(By the process of the proof of Theorem 3.9)
= (

∨
z=xy[BL(x) ∧ CL(y)],

∨
z=xy[BU (x) ∧ CU (y)])

= [BL(x0) ∧ CL(y0), BU (x0) ∧ CU (y0)].
Thus
[A ∧ (B ∨ C)](z)

= [AL(z) ∧ (BL(x0) ∧ CL(y0)),

AU (z) ∧ (BU (x0) ∧ CU (y0))]. (3.1)
On the other hand,
[(A ∧B) ∨ C]L(z)

=
∨
z=xy[(A ∧B)L(x) ∧ CL(y)]

≥ (A ∧B)L(x0) ∧ CL(y0)

= AL(x0) ∧BL(x0) ∧ CL(y0) (3.2)
and
[(A ∧B) ∨ C]U (z)

=
∨
z=xy[(A ∧B)U (x) ∧ CU (y)]

≥ (A ∧B)U (x0) ∧ CU (y0)

= AU (x0) ∧BU (x0) ∧ CU (y0) (3.3)

By (3.1), (3.2) and (3.3),

AL(z) ∧BL(x0) ∧CL(y0) > AL(x0) ∧BL(x0) ∧CL(y0)

and

AU (z)∧BU (x0)∧CU (y0) > AU (x0)∧BU (x0)∧CU (y0).

Then

AL(z), BL(x0), CL(y0) > AL(x0) ∧BL(x0) ∧ CL(y0)

and

AU (z), BU (x0), CU (y0) > AU (x0) ∧BU (x0) ∧ CU (y0).

Thus

AL(x0) ∧BL(x0) ∧ CL(y0) = AL(x0)

and

AU (x0) ∧BU (x0) ∧ CU (y0) = AU (x0).

So

AL(z) > AL(x0), AU (z) > AU (x0)

and

CL(y0) > AL(x0), CU (y0) > AU (x0).

By Result 2.B,

AL(x−1
0 ) = AL(x0) < AL(x0y0)

and

AU (x−1
0 ) = AU (x0) < AU (x0y0).

By Result 3.D, A(x0) = A(x−1
0 x0y0) = A(y0).

Thus

CL(y0) > AL(y0) and CU (y0) > AU (y0).

This contradicts the fact that A ⊃ C. So A ∧ (B ∨ C) ⊂
(A ∧B) ∨ C. Hence A ∧ (B ∨ C) = (A ∧B) ∨ C. Therefore
IVNf [s,t](G) is modular. This completes the proof.

We discuss some interesting facts concerning a special class
of interval-valued fuzzy subgroups that attain the value [1, 1] at
the identity element of G.

Lemma 3.12. Let A be a subset of a group G. Then

< [χA, χA] >= [χ<A>, χ<A>],

where < A > is the subgroup generated by A.

Proof. Let B = {B ∈ IVG(G) : [χA, χA] ⊂ B}, let B ∈ B
and let x ∈ A. Then

χA(x) = 1 ≤ BL(x) and χA(x) = 1 ≤ BU (x).

Thus B(x) = [1, 1]. Since B ∈IVG(G), B = 1̃ for any com-
posite of elements of A. So [χ<A>, χ<A>] ⊂ B. Hence
[χ<A>, χ<A>] ⊂

⋂
B. By Result 2.C, [χ<A>, χ<A>] ∈

IVG(G). Moreover, [χ<A>, χ<A>] ∈ B.
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Therefore [χ<A>, χ<A>] =
⋂
B =< [χA, χA] >.

The following can be easily seen.

Lemma 3.13. Let A and B subgroups of a group G. Then

(a) ACG if and only if [χA, χA] ∈IVN(G).

(b) [χA, χA] ◦ [χB , χB ] = [χA·B , χA·B ].

Proposition 3.14. Let S(G) be the set of all subgroup of a
group G and let IVG(S(G)) = {[χA, χA] : A ∈ S(G)}. Then
IVG(S(G)) forms a sublattice of IVGf (G)∩ IVG[1,1](G) and
hence of IVG(G).

Proof. Let A,B ∈ S(G). Then it is clear that [χA, χA] ∩
[χB , χB ] = [χA∩B , χA∩B ] ∈ IVG(S(G)). By Lemma 3.12,

< [χA, χA] ∪ [χB , χB ] > = < [χA∪B , χA∪B ] >

= [χ<A∪B>, χ<A∪B>].

Thus

[χA, χA]∨[χB , χB ] =< [χA, χA]∪[χB , χB ] >∈ IVG(S(G)).

Moreover, IVG(S(G)) ⊂ IVGf (G)∩ IVG[1,1](G).

Hence IVG(S(G)) is a sublattice of IVGf (G)∩IVG[1,1](G).

Proposition 3.14 allows us to consider the lattice of subgroups
S(G) of G a group G as a sublattice of the lattice of all interval-
valued fuzzy subgroups IVG(G) of G.

Now, in view of Theorems 3.9 and 3.11, for each fixed
[s, t] ∈ D(I) , IVNf [s, t](G) forms a modular sublattice of
IVGf (G)∩ IVG[s, t](G). Therefore, for [s, t] = [1, 1], the sub-
lattice IVNf [1, 1](G) is also modular. It is clear that

IVNf [1, 1](G) ∩ IVG(S(G)) = IVN(N(G)),

where N(G) denotes the set of all normal subgroups of G
and IVN(N(G)) = {[χN , χN ] : N ∈ N(G)}. Moreover,
IVG(N(G)) is also modular.

The lattice structure of these sublattices can be visualized by
the diagram in Figure 2,

IVG(G)
◦

IVGf (G) ◦ ◦ IVG[0, 0](G)

◦ IVGf [0, 0](G)

IVNf [0, 0](G) ◦ ◦ IVG(S(G))

◦ IFN(N(G))
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"
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b

Figure 2.

By using Lemmas 3.12 and 3.13, we obtain a well-known
classical result.

Corollary 3.15. Let G be a group. Then N(G) forms a modu-
lar sublattice of S(G).

4. Conclusion

Lee et al. [11] studied interval-valued fuzzy subgroup in the
sense of a lattice. Cheong and Hur [5], Lee et al. [10], Jang
et al. [6], Kang and Hur [8] investigated interval-valued fuzzy
ideals/(generalized) bi-ideals, subgroup and ring, respectively.

In this paper, we mainly study sublattices of the lattice of
interval-valued fuzzy subgroups of a group. In particular, we
prove that the lattice IVNf [s, t](G) is modular lattice (See
Theorem 3.11). Finally, for subgroup S(G) of a group G,
IVG(S(G)) forms a sublattice of IVGf (G)∩ IVG[1,1](G) and
hence of IVG(G) (See Proposition 3.14).

In the future, we will investigate sublattices of the lattice of
interval-valued fuzzy subrings of a ring.
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