DOI QR코드

DOI QR Code

Study on Improvement of Mechanical Properties after Heat Treatment of Hard Chromium Electrodeposits with Additives

첨가제에 의한 경질 크롬 도금 층의 열처리 후 기계적 특성 향상에 관한 연구

  • Kang, Soo Young (Dept. of Metallurgical & Material Engineering, Inha Technical College) ;
  • Lee, Dae Won (School of materials science and engineering, Inha University)
  • 강수영 (인하공업전문대학 금속재료과) ;
  • 이대원 (인하대학교 신소재공학부)
  • Received : 2014.06.07
  • Accepted : 2014.06.25
  • Published : 2014.06.30

Abstract

The addition of cyclo propane carbonyl (cpc) to chromium electroplating bath resulted in a chromium deposit which had greatly improved mechanical properties compared to conventional chromium deposits in condition of heat treatment at high temperature. The as-deposited layers had a Vicker's hardness of about 1170, which is comparable to that of conventional chromium plating deposits. With annealing, the hardness goes through a maximum of 1650 at $600^{\circ}C$. Generally speaking, the hardness of conventional plating decreases monotonically with heat treatment. X-ray diffraction show that annealing up to above $400^{\circ}C$ causes formation and growth of chromium crystallites and that chromium carbides form at above $500^{\circ}C$ temperature.

Keywords

References

  1. K.A. Laboda, A.H. Holden, P. Hoare: J. Electrochem. Soc., 127 (1980) 1709. https://doi.org/10.1149/1.2129985
  2. A. Szasz, J. Kojnok, L. Kertesz, Z. Paal, Z. Hegedus: Thin Solid Films, 116 (1984) 279. https://doi.org/10.1016/0040-6090(84)90448-6
  3. R. Brill, Z. f. Krist, 75 (1930) 217.
  4. A. Brenner, D.E. Couch, E.K. Williams, J. Res. Nat'l. Bur. Stand, 44 (1950) 109. https://doi.org/10.6028/jres.044.009
  5. A.W. Goldstein, W. Rostoker, F. Schossberger, J. Electrochem. Soc., 44 (1957) 104.
  6. T. Watanabe, J. Met. Fin. Soc. Jpn., 38 (1987) 210. https://doi.org/10.4139/sfj1950.38.210
  7. R.C. Ruhl, Mater. Sci. Eng., 1 (1967) 313. https://doi.org/10.1016/0025-5416(67)90013-4
  8. I. Ohnake, T. Fukusako, J. Jpn. Inst. Met., 45 (1981) 751. https://doi.org/10.2320/jinstmet1952.45.7_751
  9. Y. Shimada, T. Hasegawa, H. Kojima, IEEE Trans. 17 (1981) 1199.
  10. K. Niihara and T. Hira, J. Mater. Sci., 11 (1976) 596. https://doi.org/10.1007/BF00715935
  11. H. Maeda, J. Phys. Soc. Jpn., 29 (1970) 570. https://doi.org/10.1143/JPSJ.29.570
  12. S. Hoshino, H.A. Laitinen, G.B. Hoflund, J. Electrochem. Soc., 133 (1986) 681. https://doi.org/10.1149/1.2108653
  13. J. C. Crowther, S. Renton, Electroplating and Metal Finishing, 28 (1975) 6.
  14. E. Muller, Z. Electrochen 50 (1994) 172.
  15. F. Ogbun, A. Brenner, J. Electrochem. Soc., 96 (1949) 347. https://doi.org/10.1149/1.2776797

Cited by

  1. Convergent Study of Aluminum Anodizing Method on the Thermal Fatigue vol.7, pp.5, 2016, https://doi.org/10.15207/JKCS.2016.7.5.169
  2. Convergent Study of Texture on the Mechanical Properties of Electrodeposits vol.7, pp.6, 2016, https://doi.org/10.15207/JKCS.2016.7.6.193
  3. Crashworthiness of chromium plated plastic radiator grille vol.17, pp.4, 2016, https://doi.org/10.1007/s12239-016-0067-0
  4. Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater vol.49, pp.4, 2016, https://doi.org/10.5695/JKISE.2016.49.4.349